Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Microdevices ; 26(1): 14, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289398

RESUMO

Direct 3D printing of active microfluidic elements on PCB substrates enables high-speed fabrication of stand-alone microdevices for a variety of health and energy applications. Microvalves are key components of microfluidic devices and liquid metal (LM) microvalves exhibit promising flow control in microsystems integrated with PCBs. In this paper, we demonstrate LM microvalves directly 3D printed on PCB using advanced digital light processing (DLP). Electrodes on PCB are coated by carbon ink to prevent alloying between gallium-based LM plug and copper electrodes. We used DLP 3D printers with in-house developed acrylic-based resins, Isobornyl Acrylate, and Diurethane Dimethacrylate (DUDMA) and functionalized PCB surface with acrylic-based resin for strong bonding. Valving seats are printed in a 3D caterpillar geometry with chamber diameter of 700 µm. We successfully printed channels and nozzles down to 90 µm. Aiming for microvalves for low-power applications, we applied square-wave voltage of 2 Vpp at a range of frequencies between 5 to 35 Hz. The results show precise control of the bistable valving mechanism based on electrochemical actuation of LMs.


Assuntos
Microfluídica , Bifenilos Policlorados , Catéteres , Metais , Ligas
2.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257509

RESUMO

Gallium liquid metals (LMs) like Galinstan and eutectic Gallium-Indium (EGaIn) have seen increasing applications in heavy metal ion (HMI) sensing, because of their ability to amalgamate with HMIs like lead, their high hydrogen potential, and their stable electrochemical window. Furthermore, coating LM droplets with nanopowders of tungsten oxide (WO) has shown enhancement in HMI sensing owing to intense electrical fields at the nanopowder-liquid-metal interface. However, most LM HMI sensors are droplet based, which show limitations in scalability and the homogeneity of the surface. A scalable approach that can be extended to LM electrodes is therefore highly desirable. In this work, we present, for the first time, WO-Galinstan HMI sensors fabricated via photolithography of a negative cavity, Galinstan brushing inside the cavity, lift-off, and galvanic replacement (GR) in a tungsten salt solution. Successful GR of Galinstan was verified using optical microscopy, SEM, EDX, XPS, and surface roughness measurements of the Galinstan electrodes. The fabricated WO-Galinstan electrodes demonstrated enhanced sensitivity in comparison with electrodes structured from pure Galinstan and detected lead at concentrations down to 0.1 mmol·L-1. This work paves the way for a new class of HMI sensors using GR of WO-Galinstan electrodes, with applications in microfluidics and MEMS for a toxic-free environment.

3.
ACS Appl Mater Interfaces ; 15(7): 10109-10122, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36754363

RESUMO

Gallium liquid metal alloys (GLMAs) such as Galinstan and gallium-indium eutectic (EGaIn) are interesting materials due to their high surface tensions, low viscosities, and electrical conductivities comparable to classical solid metals. They have been used for applications in microelectromechanical systems (MEMS) and, more recently, liquid metal microfluidics (LMMF) for setting up devices like actuators. However, their high tendency to alloy with the most common metals used for electrodes such as gold (Au), platinum (Pt), titanium (Ti), nickel (Ni), and tungsten-titanium (WTi) is a major problem limiting the scaleup and applicability, e.g., liquid metal actuators. Stable electrodes are key elements for many applications and thus, the lack of an electrode material compatible with GLMAs is detrimental for many potential application scenarios. In this work, we study the effect of actuating Galinstan on various solid metal electrodes and present an electrode protection methodology that, first, prevents alloying and, second, prevents electrode corrosion. We demonstrate reproducible actuation of GLMA segments in LMMF, showcasing the stability of the proposed protective coating. We investigated a range of electrode materials including Au, Pt, Ti, Ni, and WTi, all in aqueous environments, and present the resulting corrosion/alloying effects by studying the interface morphology. Our proposed protective coating is based on a simple method to electrodeposit electrically conductive polypyrrole (PPy) on the electrodes to provide a conductive alloying-barrier layer for applications involving direct contact between GLMAs and electrodes. We demonstrate the versatility of this approach by direct three-dimensional (3D) printing of a 500 µm microfluidic chip on a set of electrodes onto which PPy is electrodeposited in situ for actuation of Galinstan plugs. The developed protection protocol will provide a generic, widely applicable strategy to protect a wide range of electrodes from alloying and corrosion and thus form a key element in future applications of GLMAs.

4.
Micromachines (Basel) ; 13(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35334657

RESUMO

Deterministic lateral displacement (DLD) is a well-known microfluidic technique for particle separation with high potential for integration into bioreactors for therapeutic applications. Separation is based on the interaction of suspended particles in a liquid flowing through an array of microposts under low Reynolds conditions. This technique has been used previously to separate living cells of different sizes but similar shapes. Here, we present a DLD microchip to separate rod-shaped bacterial cells up to 10 µm from submicron spherical minicells. We designed two microchips with 50 and 25 µm cylindrical posts and spacing of 15 and 2.5 µm, respectively. Soft lithography was used to fabricate polydimethylsiloxane (PDMS) chips, which were assessed at different flow rates for their separation potential. The results showed negligible shear effect on the separation efficiency for both designs. However, the higher flow rates resulted in faster separation. We optimized the geometrical parameters including the shape, size, angle and critical radii of the posts and the width and depth of the channel as well as the number of arrays to achieve separation efficiency as high as 75.5% on a single-stage separation. These results pave the way for high-throughput separation and purification modules with the potential of direct integration into bioreactors.

5.
Adv Mater ; 34(23): e2201469, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35426187

RESUMO

Gallium-based liquid metal nonspherical droplets (plugs) have seen increasing demand recently mainly because their high aspect ratios make them beneficial for a wide range of applications, including microelectromechanical systems (MEMS), microfluidics, sensor technology, radio-frequency devices, actuators, and switches. However, reproducibility of the generation of such plugs, as well as precise control over their size, is yet challenging. In this work, a simple on-chip liquid metal plug generator using a commercially available 3D microprinter is presented and the plug generator in poly(dimethylsiloxane) is replicated via soft lithography. Liquid metal plugs are generated via a combination of electrochemical oxidation, design of well-defined constrictions based on Laplace pressure, and the application of modulated voltage control signals. It is shown that plugs of various aspect ratios can be generated reproducibly for channel widths of 0.5, 0.8, and 1.5 mm with constriction widths of 0.1 mm at 6 V. Laplace-pressure-controlled plugs in constricted channels are compared to modulated-voltage-generated plugs in straight channels showing that this technique provides significantly enhanced reproducibility and control over the size and spacing between the plugs. This work paves the way to sub-millimeter liquid metal plugs generated directly on-chip for on-demand MEMS and microfluidic applications.

6.
Chem Ing Tech ; 94(7): 975-982, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35915768

RESUMO

Three-dimensional (3D) printing has already shown its high relevance for the fabrication of microfluidic devices in terms of precision manufacturing cycles and a wider range of materials. 3D-printable transparent fluoropolymers are highly sought after due to their high chemical and thermal resistance. Here, we present a simple one-step fabrication process via stereolithography of perfluoropolyether dimethacrylate. We demonstrate successfully printed microfluidic mixers with 800 µm circular channels for chemistry-on-chip applications. The printed chips show chemical, mechanical, and thermal resistance up to 200 °C, as well as high optical transparency. Aqueous and organic reactions are presented to demonstrate the wide potential of perfluoropolyether dimethacrylate for chemical synthesis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa