Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Genome Res ; 31(9): 1582-1589, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34301628

RESUMO

Mutation is the source of genetic variation and the fundament of evolution. Temperature has long been suggested to have a direct impact on realized spontaneous mutation rates. If mutation rates vary in response to environmental conditions, such as the variation of the ambient temperature through space and time, they should no longer be described as species-specific constants. By combining mutation accumulation with whole-genome sequencing in a multicellular organism, we provide empirical support to reject the null hypothesis of a constant, temperature-independent mutation rate. Instead, mutation rates depended on temperature in a U-shaped manner with increasing rates toward both temperature extremes. This relation has important implications for mutation-dependent processes in molecular evolution, processes shaping the evolution of mutation rates, and even the evolution of biodiversity as such.


Assuntos
Acúmulo de Mutações , Taxa de Mutação , Evolução Molecular , Mutação , Temperatura
2.
Mol Ecol ; 33(13): e17417, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38808556

RESUMO

A co-evolutionary arms race ensues when parasites exhibit exploitative behaviour, which prompts adaptations in their hosts, in turn triggering counter-adaptations by the parasites. To unravel the genomic basis of this coevolution from the host's perspective, we collected ants of the host species Temnothorax longispinosus, parasitized by the social parasite Temnothorax americanus, from 10 populations in the northeastern United States exhibiting varying levels of parasite prevalence and living under different climatic conditions. We conducted a genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with both prevalence and climate. Our investigation highlighted a multitude of candidate SNPs associated with parasite prevalence, particularly in genes responsible for sensory perception of smell including odorant receptor genes. We further focused on population-specific compositions of cuticular hydrocarbons, a complex trait important for signalling, communication and protection against desiccation. The relative abundances of n-alkanes were correlated with climate, while there was only a trend between parasite prevalence and the relative abundances of known recognition cues. Furthermore, we identified candidate genes likely involved in the synthesis and recognition of specific hydrocarbons. In addition, we analysed the population-level gene expression in the antennae, the primary organ for odorant reception, and established a strong correlation with parasite prevalence. Our comprehensive study highlights the intricate genomic patterns forged by the interplay of diverse selection factors and how these are manifested in the expression of various phenotypes.


Assuntos
Formigas , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Receptores Odorantes , Animais , Formigas/genética , Formigas/parasitologia , Receptores Odorantes/genética , Clima , Interações Hospedeiro-Parasita/genética , Adaptação Fisiológica/genética , Odorantes , Hidrocarbonetos/metabolismo
3.
Mol Ecol ; : e17351, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712904

RESUMO

Lignocellulose is a major component of vascular plant biomass. Its decomposition is crucial for the terrestrial carbon cycle. Microorganisms are considered primary decomposers, but evidence increases that some invertebrates may also decompose lignocellulose. We investigated the taxonomic distribution and evolutionary origins of GH45 hydrolases, important enzymes for the decomposition of cellulose and hemicellulose, in a collection of soil invertebrate genomes. We found that these genes are common in springtails and oribatid mites. Phylogenetic analysis revealed that cellulase genes were acquired early in the evolutionary history of these groups. Domain architectures and predicted 3D enzyme structures indicate that these cellulases are functional. Patterns of presence and absence of these genes across different lineages prompt further investigation into their evolutionary and ecological benefits. The ubiquity of cellulase genes suggests that soil invertebrates may play a role in lignocellulose decomposition, independently or in synergy with microorganisms. Understanding the ecological and evolutionary implications might be crucial for understanding soil food webs and the carbon cycle.

4.
Mol Ecol ; 32(2): 335-349, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36282585

RESUMO

Natural populations experience continuous and often transient changes of environmental conditions. These in turn may result in fluctuating selection pressures leading to variable demographic and evolutionary population responses. Rapid adaptation as short-term response to a sudden environmental change has in several cases been attributed to polygenic traits, but the underlying genomic dynamics and architecture are poorly understood. In this study, we took advantage of a natural experiment in an insect population of the non-biting midge Chironomus riparius by monitoring genome-wide allele frequencies before and after a cold snap event. Whole genome pooled sequencing of time series samples revealed 10 selected haplotypes carrying ancient polymorphisms, partially with signatures of balancing selection. By constantly cold exposing genetically variable individuals in the laboratory, we could demonstrate with whole genome resequencing (i) that among the survivors, the same alleles rose in frequency as in the wild, and (ii) that the identified variants additively predicted fitness (survival time) of its bearers. Finally, by simultaneously sequencing the genome and the transcriptome of cold exposed individuals we could tentatively link some of the selected SNPs to the cis- and trans-regulation of genes and pathways known to be involved in cold response of insects, such as cytochrome P450 and fatty acid metabolism. Altogether, our results shed light on the strength and speed of selection in natural populations and the genomic architecture of its underlying polygenic trait. Population genomic time series data thus appear as promising tool for measuring the selective tracking of fluctuating selection in natural populations.


Assuntos
Adaptação Fisiológica , Seleção Genética , Humanos , Frequência do Gene/genética , Adaptação Fisiológica/genética , Evolução Biológica , Polimorfismo de Nucleotídeo Único/genética
5.
Mol Ecol ; 32(2): 350-368, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305220

RESUMO

Driven by globalization, urbanization and climate change, the distribution range of invasive vector species has expanded to previously colder ecoregions. To reduce health-threatening impacts on humans, insect vectors are extensively studied. Population genomics can reveal the genomic basis of adaptation and help to identify emerging trends of vector expansion. By applying whole genome analyses and genotype-environment associations to populations of the main dengue vector Aedes aegypti, sampled along an altitudinal gradient in Nepal (200-1300 m), we identify putatively adaptive traits and describe the species' genomic footprint of climate adaptation to colder ecoregions. We found two differentiated clusters with significantly different allele frequencies in genes associated to climate adaptation between the highland population (1300 m) and all other lowland populations (≤800 m). We revealed nonsynonymous mutations in 13 of the candidate genes associated to either altitude, precipitation or cold tolerance and identified an isolation-by-environment differentiation pattern. Other than the expected gradual differentiation along the altitudinal gradient, our results reveal a distinct genomic differentiation of the highland population. Local high-altitude adaptation could be one explanation of the population's phenotypic cold tolerance. Carrying alleles relevant for survival under colder climate increases the likelihood of this highland population to a worldwide expansion into other colder ecoregions.


Assuntos
Aedes , Dengue , Humanos , Animais , Aedes/genética , Dengue/genética , Dengue/epidemiologia , Nepal/epidemiologia , Mosquitos Vetores/genética , Genômica
6.
Oecologia ; 202(4): 757-767, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37594600

RESUMO

Invasive predatory species may alter population dynamic processes of their prey and impact biological communities and ecosystem processes. Revealing biotic interactions, however, including the relationship between predator and prey, is a difficult task, in particular for species that are hard to monitor. Here, we present a case study that documents the utility of environmental DNA analysis (eDNA) to assess predator-prey interactions between two invasive fishes (Lepomis gibbosus, Pseudorasbora parva) and two potential amphibian prey species, (Triturus cristatus, Pelobates fuscus). We used species-specific TaqMan assays for quantitative assessment of eDNA concentrations from water samples collected from 89 sites across 31 ponds during three consecutive months from a local amphibian hotspot in Germany. We found a negative relationship between eDNA concentrations of the predators (fishes) and prey (amphibians) using Monte-Carlo tests. Our study highlights the potential of eDNA application to reveal predator-prey interactions and confirms the hypothesis that the observed local declines of amphibian species may be at least partly caused by recently introduced invasive fishes. Our findings have important consequences for local conservation management and highlight the usefulness of eDNA approaches to assess ecological interactions and guide targeted conservation action.


Assuntos
DNA Ambiental , Animais , Ecossistema , Espécies Introduzidas , Anuros , Alemanha
7.
BMC Genomics ; 23(1): 709, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258177

RESUMO

BACKGROUND: The extent and impact of evolutionary change occurring in natural populations in response to rapid anthropogenic impact is still poorly understood on the genome-wide level. Here, we explore the genetic structure, demographic history, population differentiation, and domestic introgression based on whole genome data of the endangered European wildcat in Germany, to assess potential genomic consequences of the species' recent spread across human-dominated cultural landscapes. RESULTS: Reconstruction of demographic history and introgression rates based on 47 wildcat and 37 domestic cat genomes suggested late introgression between wild and domestic cat, coinciding with the introduction of domestic cat during the Roman period, but overall relatively low rates of hybridization and introgression from domestic cats. Main population divergence found between an eastern and central German wildcat clade was found to be of rather recent origin (200 y), and thus the likely consequence of anthropogenic persecution and resulting isolation in population refugia. We found similar effective population sizes and no substantial inbreeding across populations. Interestingly, highly differentiated genes between wild cat populations involved in the tryptophan-kynurenine-serotonin pathway were revealed, which plays a role in behavioral processes such as stress susceptibility and tolerance, suggesting that differential selection acted in the populations. CONCLUSIONS: We found strong evidence for substantial recent anthropogenic impact on the genetic structure of European wildcats, including recent persecution-driven population divergence, as well as potential adaptation to human-dominate environments. In contrast, the relatively low levels of domestic introgression and inbreeding found in this study indicate a substantial level of "resistance" of this elusive species towards major anthropogenic impacts, such as the omnipresence of domestic cats as well as substantial habitat fragmentation. While those findings have strong implications for ongoing conservation strategies, we demand closer inspection of selective pressures acting on this and other wildlife species in anthropogenic environments.


Assuntos
DNA Mitocondrial , Triptofano , Gatos/genética , Humanos , Animais , DNA Mitocondrial/genética , Cinurenina , Serotonina , Efeitos Antropogênicos
8.
BMC Genomics ; 22(1): 62, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468057

RESUMO

BACKGROUND: Next Generation Sequencing (NGS) is the fundament of various studies, providing insights into questions from biology and medicine. Nevertheless, integrating data from different experimental backgrounds can introduce strong biases. In order to methodically investigate the magnitude of systematic errors in single nucleotide variant calls, we performed a cross-sectional observational study on a genomic cohort of 99 subjects each sequenced via (i) Illumina HiSeq X, (ii) Illumina HiSeq, and (iii) Complete Genomics and processed with the respective bioinformatic pipeline. We also repeated variant calling for the Illumina cohorts with GATK, which allowed us to investigate the effect of the bioinformatics analysis strategy separately from the sequencing platform's impact. RESULTS: The number of detected variants/variant classes per individual was highly dependent on the experimental setup. We observed a statistically significant overrepresentation of variants uniquely called by a single setup, indicating potential systematic biases. Insertion/deletion polymorphisms (indels) were associated with decreased concordance compared to single nucleotide polymorphisms (SNPs). The discrepancies in indel absolute numbers were particularly prominent in introns, Alu elements, simple repeats, and regions with medium GC content. Notably, reprocessing sequencing data following the best practice recommendations of GATK considerably improved concordance between the respective setups. CONCLUSION: We provide empirical evidence of systematic heterogeneity in variant calls between alternative experimental and data analysis setups. Furthermore, our results demonstrate the benefit of reprocessing genomic data with harmonized pipelines when integrating data from different studies.


Assuntos
Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Estudos Transversais , Genômica , Humanos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
9.
J Evol Biol ; 34(6): 937-952, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33200473

RESUMO

Species living in sympatry and sharing a similar niche often express parallel phenotypes as a response to similar selection pressures. The degree of parallelism within underlying genomic levels is often unexplored, but can give insight into the mechanisms of natural selection and adaptation. Here, we use multi-dimensional genomic associations to assess the basis of local and climate adaptation in two sympatric, cryptic Crematogaster levior ant species along a climate gradient. Additionally, we investigate the genomic basis of chemical communication in both species. Communication in insects is mainly mediated by cuticular hydrocarbons (CHCs), which also protect against water loss and, hence, are subject to changes via environmental acclimation or adaptation. The combination of environmental and chemical association analyses based on genome-wide Pool-Seq data allowed us to identify single nucleotide polymorphisms (SNPs) associated with climate and with chemical differences. Within species, CHC changes as a response to climate seem to be driven by phenotypic plasticity, since there is no overlap between climate- and CHC-associated SNPs. The only exception is the odorant receptor OR22c, which may be a candidate for population-specific CHC recognition in one of the species. Within both species, climate is significantly correlated with CHC differences, as well as to allele frequency differences. However, associated candidate SNPs, genes and functions are largely species-specific and we find evidence for minimal parallel evolution only on the level of genomic regions (J = 0.04). This highlights that even closely related species may follow divergent evolutionary trajectories when expressing similar adaptive phenotypes.


Assuntos
Adaptação Biológica , Formigas , Evolução Biológica , Genoma de Inseto , Simpatria , Comunicação Animal , Animais , Clima , Hidrocarbonetos
10.
Mol Ecol ; 29(3): 536-548, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31886913

RESUMO

Evolve and Resquence (E&R) studies are a useful tool to study genomic processes during rapid adaptation, e.g., in the framework of adaptive responses to global climate change. We applied different thermal regimes to a natural Chironomus riparius (Diptera) population in an E&R framework to infer its evolutionary potential for rapid thermal adaptation. We exposed two replicates to three temperatures each (14°C, 20°C and 26°C) for more than two years, the experiment thus lasting 22, 44 or 65 generations, respectively. The two higher temperatures presented a priori moderate, respectively strong selection pressures. Life-cycle fitness tests revealed no appreciable adaptation to thermal regimes but a common adaptation of all six replicates probably due to the rearing conditions, presumably increased larval density and water quality. Genomic analyses showed a strong, genome-wide selective response in all replicates (mean s of selected SNPs = 0.305). This genomic response was significantly similar at all genomic levels among all replicates (SNPs, 10 kb windows, genes, exons, regions of elevated allele frequency change [REA]). The intersections among the replicates exposed to the same temperature were either insignificant or underrepresented. This confirmed a selective response to identical selection pressure(s), however, not to thermal regime. Genes closest to the SNP with the highest selection coefficient per REA were enriched for GO terms related to ion transport, regulation of transcription and signal transduction, which supported the presumed acting selection pressures. Our study showed the evolutionary potential for rapid adaptation by genome-wide and probably polygenic selection on standing genetic variation in C. riparius. However, because of the impossibility to accurately predict the acting selective regime in evolutionary experiments, we discuss the sobering perspectives for inferring the evolutionary potential of natural populations with this approach.


Assuntos
Adaptação Fisiológica/genética , Chironomidae/genética , Seleção Genética/genética , Animais , Evolução Biológica , Mudança Climática , Frequência do Gene/genética , Genética Populacional/métodos , Genômica/métodos , Estágios do Ciclo de Vida/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Temperatura
11.
Ecol Appl ; 30(2): e02034, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31680362

RESUMO

Active species reintroduction is an important conservation tool when aiming for the restoration of biological communities and ecosystems. The effective monitoring of reintroduction success is a crucial factor in this process. Here, we used a combination of environmental DNA (eDNA) techniques and species distribution models (SDMs) to evaluate the success of recent reintroductions of the freshwater fish Alburnoides bipunctatus in central Germany. We built SDMs without and with eDNA presence data to locate further suitable reintroduction sites and potentially overlooked populations of the species. We successfully detected eDNA of A. bipunctatus at all reintroduction sites, as well as several adjacent sites mostly in downstream direction, which supports the success of reintroduction efforts. eDNA-based species detection considerably improved SDMs for A. bipunctatus, which allowed to identify species presence in previously unknown localities. Our results confirm the usefulness of eDNA techniques as standard tool to monitor reintroduced fish populations. We propose that combining eDNA with SDMs is a highly effective approach for long-term monitoring of reintroduction success in aquatic species.


Assuntos
DNA Ambiental , Ecossistema , Animais , Peixes/genética , Água Doce , Alemanha
13.
Mol Ecol ; 27(6): 1439-1456, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29473242

RESUMO

The gradual heterogeneity of climatic factors poses varying selection pressures across geographic distances that leave signatures of clinal variation in the genome. Separating signatures of clinal adaptation from signatures of other evolutionary forces, such as demographic processes, genetic drift and adaptation, to nonclinal conditions of the immediate local environment is a major challenge. Here, we examine climate adaptation in five natural populations of the harlequin fly Chironomus riparius sampled along a climatic gradient across Europe. Our study integrates experimental data, individual genome resequencing, Pool-Seq data and population genetic modelling. Common-garden experiments revealed significantly different population growth rates at test temperatures corresponding to the population origin along the climate gradient, suggesting thermal adaptation on the phenotypic level. Based on a population genomic analysis, we derived empirical estimates of historical demography and migration. We used an FST outlier approach to infer positive selection across the climate gradient, in combination with an environmental association analysis. In total, we identified 162 candidate genes as genomic basis of climate adaptation. Enriched functions among these candidate genes involved the apoptotic process and molecular response to heat, as well as functions identified in studies of climate adaptation in other insects. Our results show that local climate conditions impose strong selection pressures and lead to genomic adaptation despite strong gene flow. Moreover, these results imply that selection to different climatic conditions seems to converge on a functional level, at least between different insect species.


Assuntos
Chironomidae/genética , Genética Populacional , Genômica , Seleção Genética/genética , Aclimatação/genética , Adaptação Fisiológica/genética , Animais , Chironomidae/crescimento & desenvolvimento , Clima , Mudança Climática , Ecossistema , Europa (Continente) , Deriva Genética
14.
Mol Phylogenet Evol ; 118: 357-368, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107619

RESUMO

The genus Candidula (Geomitridae), consisting of 28 species in Western Europe as currently described, has a disjunct distribution in the Iberian Peninsula, Italy, the Balkans, the Aegean Islands, and one species on the Canary Islands. Although the genus is seemingly well defined by characters of the reproductive system, the relationships within the genus are still unclear and some authors have indicated a possible subgeneric division based on the internal morphology of the dart sac. Despite substantial phylogenetic incongruence, we present a well-resolved molecular phylogeny of Candidula based on two mitochondrial genes (COI and 16S rRNA), the nuclear rDNA region (5.8S rNRA + ITS2 + 28S rRNA) and seven additional nuclear DNA regions developed specifically for this genus (60SL13, 60SL17, 60SL7, RPL14, 40SS6, 60SL9, 60SL13a), in total 5595 bp. Six reciprocally monophyletic entities including Candidula species were recovered, grouping into two major clades. The incorporation of additional geomitrid genera allowed us to unequivocally demonstrate the polyphyly of the genus Candidula. One major clade grouped species from southern France and Italy with the widely distributed species C. unifasciata. The second major clade grouped all the species from the Iberian Peninsula, including C. intersecta and C. gigaxii. Candidula ultima from the Canary Islands was recovered as separated lineage within the latter clade and related to African taxa. The six monophyla were defined as six new genera belonging to different tribes within the Helicellinae. Thus, we could show that similar structures of the stimulatory apparatus of the genital system in different taxa do not necessarily indicate a close phylogenetic relationship in the Geomitridae. More genera of the family are needed to clarify their evolutionary relationships, and to fully understand the evolution of the stimulatory apparatus of the genital system within the Geomitridae.


Assuntos
Núcleo Celular/genética , Mitocôndrias/genética , Caramujos/classificação , Animais , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 28S/química , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Caramujos/genética
15.
BMC Bioinformatics ; 18(1): 148, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28253837

RESUMO

BACKGROUND: The classification of samples on a molecular level has manifold applications, from patient classification regarding cancer treatment to phylogenetics for identifying evolutionary relationships between species. Modern methods employ the alignment of DNA or amino acid sequences, mostly not genome-wide but only on selected parts of the genome. Recently proteomics-based approaches have become popular. An established method for the identification of peptides and proteins is liquid chromatography-tandem mass spectrometry (LC-MS/MS). First, protein sequences from MS/MS spectra are identified by means of database searches, given samples with known genome-wide sequence information, then sequence based methods are applied. Alternatively, de novo peptide sequencing algorithms annotate MS/MS spectra and deduce peptide/protein information without a database. A newer approach independent of additional information is to directly compare unidentified tandem mass spectra. The challenge then is to compute the distance between pairwise MS/MS runs consisting of thousands of spectra. METHODS: We present DISMS2, a new algorithm to calculate proteome-wide distances directly from MS/MS data, extending the algorithm compareMS2, an approach that also uses a spectral comparison pipeline. RESULTS: Our new more flexible algorithm, DISMS2, allows for the choice of the spectrum distance measure and includes different spectra preprocessing and filtering steps that can be tailored to specific situations by parameter optimization. CONCLUSIONS: DISMS2 performs well for samples from species with and without database annotation and thus has clear advantages over methods that are purely based on database search.


Assuntos
Algoritmos , Cromatografia Líquida/métodos , Peptídeos/análise , Proteoma/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Humanos
16.
J Proteome Res ; 16(9): 3209-3218, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28741358

RESUMO

Complex mass spectrometry based proteomics data sets are mostly analyzed by protein database searches. While this approach performs considerably well for sequenced organisms, direct inference of peptide sequences from tandem mass spectra, i.e., de novo peptide sequencing, oftentimes is the only way to obtain information when protein databases are absent. However, available algorithms suffer from drawbacks such as lack of validation and often high rates of false positive hits (FP). Here we present a simple method of combining results from commonly available de novo peptide sequencing algorithms, which in conjunction with minor tweaks in data acquisition ensues lower empirical FDR compared to the analysis using single algorithms. Results were validated using state-of-the art database search algorithms as well specifically synthesized reference peptides. Thus, we could increase the number of PSMs meeting a stringent FDR of 5% more than 3-fold compared to the single best de novo sequencing algorithm alone, accounting for an average of 11 120 PSMs (combined) instead of 3476 PSMs (alone) in triplicate 2 h LC-MS runs of tryptic HeLa digestion.


Assuntos
Algoritmos , Peptídeos/análise , Proteômica/métodos , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromatografia Líquida , Bases de Dados de Proteínas , Células HeLa , Humanos , Camundongos , Mioblastos/química , Mioblastos/metabolismo , Proteólise , Proteômica/instrumentação , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Caramujos/química , Caramujos/metabolismo , Espectrometria de Massas em Tandem , Tripsina/química
17.
BMC Evol Biol ; 17(1): 93, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28359299

RESUMO

BACKGROUND: Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly differentiated genomic regions. We then detected gene-environment correlations while controlling for shared population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness differences of individuals from different environments. RESULTS: We detected two strongly differentiated genetic clusters linked to Mediterranean and temperate-oceanic climate, and an admixture zone, which coincided with the transition between the two bioclimates. High altitude individuals showed ecophysiological adaptations to wetter and more shaded conditions. Highly differentiated genome regions contained a number of genes associated with stress response, local environmental adaptation, and sexual reproduction. CONCLUSIONS: Taken together our results provide evidence for a complex interplay between demographic history and spatially varying selection acting on a number of key biological processes, suggesting a scenario of ecological speciation.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Líquens/genética , Líquens/fisiologia , Adaptação Fisiológica , Ascomicetos/classificação , Ecossistema , Genoma Fúngico , Genômica , Líquens/classificação , Região do Mediterrâneo , Simbiose
18.
Mol Ecol ; 26(12): 3256-3275, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28316106

RESUMO

Active transposable elements (TEs) may result in divergent genomic insertion and abundance patterns among conspecific populations. Upon secondary contact, such divergent genetic backgrounds can theoretically give rise to classical Dobzhansky-Muller incompatibilities (DMI), thus contributing to the evolution of endogenous genetic barriers and eventually causing population divergence. We investigated differential TE abundance among conspecific populations of the nonbiting midge Chironomus riparius and evaluated their potential role in causing endogenous genetic incompatibilities between these populations. We focussed on a Chironomus-specific TE, the minisatellite-like Cla-element, whose activity is associated with speciation in the genus. Using a newly generated and annotated draft genome for a genomic study with five natural C. riparius populations, we found highly population-specific TE insertion patterns with many private insertions. A significant correlation of the pairwise FST estimated from genomewide single-nucleotide polymorphisms (SNPs) and the FST estimated from TEs is consistent with drift as the major force driving TE population differentiation. However, the significantly higher Cla-element FST level due to a high proportion of differentially fixed Cla-element insertions also indicates selection against segregating (i.e. heterozygous) insertions. With reciprocal crossing experiments and fluorescent in situ hybridization of Cla-elements to polytene chromosomes, we documented phenotypic effects on female fertility and chromosomal mispairings. We propose that the inferred negative selection on heterozygous Cla-element insertions may cause endogenous genetic barriers and therefore acts as DMI among C. riparius populations. The intrinsic genomic turnover exerted by TEs may thus have a direct impact on population divergence that is operationally different from drift and local adaptation.


Assuntos
Chironomidae/genética , Elementos de DNA Transponíveis , Genética Populacional , Genoma de Inseto , Repetições Minissatélites , Animais , Evolução Molecular , Feminino , Hibridização in Situ Fluorescente , Polimorfismo de Nucleotídeo Único
20.
BMC Evol Biol ; 16(1): 164, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549326

RESUMO

BACKGROUND: Transitions from marine to intertidal and terrestrial habitats resulted in a significant adaptive radiation within the Panpulmonata (Gastropoda: Heterobranchia). This clade comprises several groups that invaded the land realm independently and in different time periods, e.g., Ellobioidea, Systellomatophora, and Stylommatophora. Thus, mitochondrial genomes of panpulmonate gastropods are promising to screen for adaptive molecular signatures related to land invasions. RESULTS: We obtained three complete mitochondrial genomes of terrestrial panpulmonates, i.e., the ellobiid Carychium tridentatum, and the stylommatophorans Arion rufus and Helicella itala. Our dataset consisted of 50 mitogenomes comprising almost all major panpulmonate lineages. The phylogenetic tree based on mitochondrial genes supports the monophyly of the clade Panpulmonata. Terrestrial lineages were sampled from Ellobioidea (1 sp.) and Stylommatophora (9 spp.). The branch-site test of positive selection detected significant non-synonymous changes in the terrestrial branches leading to Carychium (Ellobiodea) and Stylommatophora. These convergent changes occurred in the cob and nad5 genes (OXPHOS complex III and I, respectively). CONCLUSIONS: The convergence of the non-synonymous changes in cob and nad5 suggest possible ancient episodes of positive selection related to adaptations to non-marine habitats. The positively selected sites in our data are in agreement with previous results in vertebrates suggesting a general pattern of adaptation to the new metabolic requirements. The demand for energy due to the colonization of land (for example, to move and sustain the body mass in the new habitat) and the necessity to tolerate new conditions of abiotic stress may have changed the physiological constraints in the early terrestrial panpulmonates and triggered adaptations at the mitochondrial level.


Assuntos
Evolução Biológica , Gastrópodes/genética , Genoma Mitocondrial , Adaptação Biológica , Animais , Ecossistema , Gastrópodes/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa