Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 270: 119972, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842522

RESUMO

Functional MRI (fMRI) data may be contaminated by artifacts arising from a myriad of sources, including subject head motion, respiration, heartbeat, scanner drift, and thermal noise. These artifacts cause deviations from common distributional assumptions, introduce spatial and temporal outliers, and reduce the signal-to-noise ratio of the data-all of which can have negative consequences for the accuracy and power of downstream statistical analysis. Scrubbing is a technique for excluding fMRI volumes thought to be contaminated by artifacts and generally comes in two flavors. Motion scrubbing based on subject head motion-derived measures is popular but suffers from a number of drawbacks, among them the need to choose a threshold, a lack of generalizability to multiband acquisitions, and high rates of censoring of individual volumes and entire subjects. Alternatively, data-driven scrubbing methods like DVARS are based on observed noise in the processed fMRI timeseries and may avoid some of these issues. Here we propose "projection scrubbing", a novel data-driven scrubbing method based on a statistical outlier detection framework and strategic dimension reduction, including independent component analysis (ICA), to isolate artifactual variation. We undertake a comprehensive comparison of motion scrubbing with data-driven projection scrubbing and DVARS. We argue that an appropriate metric for the success of scrubbing is maximal data retention subject to reasonable performance on typical benchmarks such as the validity, reliability, and identifiability of functional connectivity. We find that stringent motion scrubbing yields worsened validity, worsened reliability, and produced small improvements to fingerprinting. Meanwhile, data-driven scrubbing methods tend to yield greater improvements to fingerprinting while not generally worsening validity or reliability. Importantly, however, data-driven scrubbing excludes a fraction of the number of volumes or entire sessions compared to motion scrubbing. The ability of data-driven fMRI scrubbing to improve data retention without negatively impacting the quality of downstream analysis has major implications for sample sizes in population neuroscience research.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Movimento (Física) , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
2.
Neuroimage ; 250: 118877, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051581

RESUMO

There is significant interest in adopting surface- and grayordinate-based analysis of MR data for a number of reasons, including improved whole-cortex visualization, the ability to perform surface smoothing to avoid issues associated with volumetric smoothing, improved inter-subject alignment, and reduced dimensionality. The CIFTI grayordinate file format introduced by the Human Connectome Project further advances grayordinate-based analysis by combining gray matter data from the left and right cortical hemispheres with gray matter data from the subcortex and cerebellum into a single file. Analyses performed in grayordinate space are well-suited to leverage information shared across the brain and across subjects through both traditional analysis techniques and more advanced statistical methods, including Bayesian methods. The R statistical environment facilitates use of advanced statistical techniques, yet little support for grayordinates analysis has been previously available in R. Indeed, few comprehensive programmatic tools for working with CIFTI files have been available in any language. Here, we present the ciftiTools R package, which provides a unified environment for reading, writing, visualizing, and manipulating CIFTI files and related data formats. We illustrate ciftiTools' convenient and user-friendly suite of tools for working with grayordinates and surface geometry data in R, and we describe how ciftiTools is being utilized to advance the statistical analysis of grayordinate-based functional MRI data.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Neuroimagem , Conectoma , Interpretação Estatística de Dados , Humanos , Software
3.
Front Neurosci ; 16: 1051424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685218

RESUMO

Introduction: Analysis of task fMRI studies is typically based on using ordinary least squares within a voxel- or vertex-wise linear regression framework known as the general linear model. This use produces estimates and standard errors of the regression coefficients representing amplitudes of task-induced activations. To produce valid statistical inferences, several key statistical assumptions must be met, including that of independent residuals. Since task fMRI residuals often exhibit temporal autocorrelation, it is common practice to perform "prewhitening" to mitigate that dependence. Prewhitening involves estimating the residual correlation structure and then applying a filter to induce residual temporal independence. While theoretically straightforward, a major challenge in prewhitening for fMRI data is accurately estimating the residual autocorrelation at each voxel or vertex of the brain. Assuming a global model for autocorrelation, which is the default in several standard fMRI software tools, may under- or over-whiten in certain areas and produce differential false positive control across the brain. The increasing popularity of multiband acquisitions with faster temporal resolution increases the challenge of effective prewhitening because more complex models are required to accurately capture the strength and structure of autocorrelation. These issues are becoming more critical now because of a trend toward subject-level analysis and inference. In group-average or group-difference analyses, the within-subject residual correlation structure is accounted for implicitly, so inadequate prewhitening is of little real consequence. For individual subject inference, however, accurate prewhitening is crucial to avoid inflated or spatially variable false positive rates. Methods: In this paper, we first thoroughly examine the patterns, sources and strength of residual autocorrelation in multiband task fMRI data. Second, we evaluate the ability of different autoregressive (AR) model-based prewhitening strategies to effectively mitigate autocorrelation and control false positives. We consider two main factors: the choice of AR model order and the level of spatial regularization of AR model coefficients, ranging from local smoothing to global averaging. We also consider determining the AR model order optimally at every vertex, but we do not observe an additional benefit of this over the use of higher-order AR models (e.g. (AR(6)). To overcome the computational challenge associated with spatially variable prewhitening, we developed a computationally efficient R implementation using parallelization and fast C++ backend code. This implementation is included in the open source R package BayesfMRI. Results: We find that residual autocorrelation exhibits marked spatial variance across the cortex and is influenced by many factors including the task being performed, the specific acquisition protocol, mis-modeling of the hemodynamic response function, unmodeled noise due to subject head motion, and systematic individual differences. We also find that local regularization is much more effective than global averaging at mitigating autocorrelation. While increasing the AR model order is also helpful, it has a lesser effect than allowing AR coefficients to vary spatially. We find that prewhitening with an AR(6) model with local regularization is effective at reducing or even eliminating autocorrelation and controlling false positives. Conclusion: Our analysis revealed dramatic spatial differences in autocorrelation across the cortex. This spatial topology is unique to each session, being influenced by the task being performed, the acquisition technique, various modeling choices, and individual differences. If not accounted for, these differences will result in differential false positive control and power across the cortex and across subjects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa