RESUMO
BACKGROUND: Resistance to androgen deprivation therapies is a major driver of mortality in advanced prostate cancer. Therefore, there is a need to develop new preclinical models that allow the investigation of resistance mechanisms and the assessment of drugs for the treatment of castration-resistant prostate cancer. METHODS: We generated two novel cell line models (LAPC4-CR and VCaP-CR) which were derived by passaging LAPC4 and VCaP cells in vivo and in vitro under castrate conditions. We performed detailed transcriptomic (RNA-seq) and proteomic analyses (SWATH-MS) to delineate expression differences between castration-sensitive and castration-resistant cell lines. Furthermore, we characterized the in vivo and in vitro growth characteristics of these novel cell line models. RESULTS: The two cell line derivatives LAPC4-CR and VCaP-CR showed castration-resistant growth in vitro and in vivo which was only minimally inhibited by AR antagonists, enzalutamide, and bicalutamide. High-dose androgen treatment resulted in significant growth arrest of VCaP-CR but not in LAPC4-CR cells. Both cell lines maintained AR expression, but exhibited distinct expression changes on the mRNA and protein level. Integrated analyses including data from LNCaP and the previously described castration-resistant LNCaP-abl cells revealed an expression signature of castration resistance. CONCLUSIONS: The two novel cell line models LAPC4-CR and VCaP-CR and their comprehensive characterization on the RNA and protein level represent important resources to study the molecular mechanisms of castration resistance.
Assuntos
Neoplasias de Próstata Resistentes à Castração/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , FenótipoRESUMO
The circular economy has been identified as a critical keyword for achieving the Sustainable Development Goals. Nevertheless, there is a lack of in-depth empirical literature on the impact mechanisms of the circular economy (CE) and economic growth (GDP) in mitigating e-waste generation (waste electrical and electronic equipment - WEEE). Given Europe's leading position in e-waste generation per capita, the study aims to scrutinize the interplay between CE, GDP, and WEEE for 2010-2020. The research applies advanced econometric methods, primarily centered around the system generalized method of moment and dynamic panel threshold. It was noteworthy that different CE indicators exhibited varying effects on WEEE through the econometric analysis. Therefore, the research uniquely utilized the entropy weight method to compute a holistic composite index for the circular economy (CEI) and gained some interesting findings. Firstly, CEI significantly reduced WEEE, while GDP drove its increase. However, an overly developed CEI of 0.7616 counteracted its beneficial effect. Secondly, the synergy of CEI*GDP engendered the circular economy rebound effect, diminishing environmental benefits. Thirdly, in the circular context, the environmental Kuznets curve was validated, showcasing an inverted U-shaped pattern. Finally, the study found CEI to have different threshold effects, with thresholds of 0.2161 to inhibit WEEE, 0.2114 to avert the circular economy rebound effect, and 0.2360 to leverage GDP in reducing WEEE. These outcomes give insights to policymakers in designing sound policies targeting circular economy development and decoupling e-waste generation from economic growth towards the United Nations' SDGs.
Assuntos
Desenvolvimento Econômico , Resíduo Eletrônico , União Europeia , Desenvolvimento Sustentável , Europa (Continente)RESUMO
Direct visualization of point mutations in situ can be informative for studying genetic diseases and nuclear biology. We describe a direct hybridization genome imaging method with single-nucleotide sensitivity, single guide genome oligopaint via local denaturation fluorescence in situ hybridization (sgGOLDFISH), which leverages the high cleavage specificity of eSpCas9(1.1) variant combined with a rationally designed guide RNA to load a superhelicase and reveal probe binding sites through local denaturation. The guide RNA carries an intentionally introduced mismatch so that while wild-type target DNA sequence can be efficiently cleaved, a mutant sequence with an additional mismatch (e.g., caused by a point mutation) cannot be cleaved. Because sgGOLDFISH relies on genomic DNA being cleaved by Cas9 to reveal probe binding sites, the probes will only label the wild-type sequence but not the mutant sequence. Therefore, sgGOLDFISH has the sensitivity to differentiate the wild-type and mutant sequences differing by only a single base pair. Using sgGOLDFISH, we identify base-editor-modified and unmodified progeroid fibroblasts from a heterogeneous population, validate the identification through progerin immunofluorescence, and demonstrate accurate sub-nuclear localization of point mutations.
Assuntos
DNA , Nucleotídeos , Hibridização in Situ Fluorescente , Hibridização de Ácido Nucleico , DNA/metabolismo , RNA Guia de Sistemas CRISPR-CasRESUMO
A limited number of cell lines have fueled the majority of preclinical prostate cancer research, but their genomes remain incompletely characterized. Here, we utilized whole-genome linked-read sequencing for comprehensive characterization of phased mutations and rearrangements in the most commonly used cell lines in prostate cancer research including PC3, LNCaP, DU145, CWR22Rv1, VCaP, LAPC4, MDA-PCa-2b, RWPE-1, and four derivative castrate-resistant (CR) cell lines LNCaP_Abl, LNCaP_C42b, VCaP-CR, and LAPC4-CR. Phasing of mutations allowed determination of "gene-level haplotype" to assess whether genes harbored heterozygous mutations in one or both alleles. Phased structural variant analysis allowed identification of complex rearrangement chains consistent with chromothripsis and chromoplexy. In addition, comparison of parental and derivative CR lines revealed previously known and novel genomic alterations associated with the CR phenotype. IMPLICATIONS: This study therefore comprehensively characterized phased genomic alterations in the commonly used prostate cancer cell lines, providing a useful resource for future prostate cancer research.
Assuntos
Neoplasias da Próstata , Linhagem Celular , Linhagem Celular Tumoral , Rearranjo Gênico , Humanos , Masculino , Mutação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Sequenciamento Completo do GenomaRESUMO
PURPOSE: Rhabdoid tumors are devastating pediatric cancers in need of improved therapies. We sought to identify small molecules that exhibit in vitro and in vivo efficacy against preclinical models of rhabdoid tumor. EXPERIMENTAL DESIGN: We screened eight rhabdoid tumor cell lines with 481 small molecules and compared their sensitivity with that of 879 other cancer cell lines. Genome-scale CRISPR-Cas9 inactivation screens in rhabdoid tumors were analyzed to confirm target vulnerabilities. Gene expression and CRISPR-Cas9 data were queried across cell lines and primary rhabdoid tumors to discover biomarkers of small-molecule sensitivity. Molecular correlates were validated by manipulating gene expression. Subcutaneous rhabdoid tumor xenografts were treated with the most effective drug to confirm in vitro results. RESULTS: Small-molecule screening identified the protein-translation inhibitor homoharringtonine (HHT), an FDA-approved treatment for chronic myelogenous leukemia (CML), as the sole drug to which all rhabdoid tumor cell lines were selectively sensitive. Validation studies confirmed the sensitivity of rhabdoid tumor to HHT was comparable with that of CML cell lines. Low expression of the antiapoptotic gene BCL2L1, which encodes Bcl-XL, was the strongest predictor of HHT sensitivity, and HHT treatment consistently depleted Mcl-1, the synthetic-lethal antiapoptotic partner of Bcl-XL. Rhabdoid tumor cell lines and primary-tumor samples expressed low BCL2L1, and overexpression of BCL2L1 induced resistance to HHT in rhabdoid tumor cells. Furthermore, HHT treatment inhibited rhabdoid tumor cell line and patient-derived xenograft growth in vivo. CONCLUSIONS: Rhabdoid tumor cell lines and xenografts are highly sensitive to HHT, at least partially due to their low expression of BCL2L1. HHT may have therapeutic potential against rhabdoid tumors.
Assuntos
Mepesuccinato de Omacetaxina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Tumor Rabdoide/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Mepesuccinato de Omacetaxina/uso terapêutico , Humanos , Camundongos , Tumor Rabdoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/genéticaRESUMO
Interactions between regulatory pathways allow organisms to adapt to their environment and respond to stress. One interaction that has been recently identified occurs between the aryl hydrocarbon receptor (AHR) and the nuclear factor erythroid-2 related factor (NRF) family. Each transcription factor regulates numerous downstream genes involved in the cellular response to toxicants and oxidative stress; they are also implicated in normal developmental pathways. The zebrafish model was used to explore the role of AHR regulation of nrf genes during development and in response to toxicant exposure. To determine if AHR1b is responsible for transcriptional regulation of 6 nrf genes during development, a loss-of-function experiment using morpholino-modified oligonucleotides was conducted followed by a chromatin immunoprecipitation study at the beginning of the pharyngula period (24 h postfertilization). The expression of nrf1a was AHR1b dependent and its expression was directly regulated through specific XREs in its cis-promoter. However, nrf1a expression was not altered by exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a toxicant and prototypic AHR agonist. The expression of nrf1b, nrf2a, and nfe2 was induced by TCDD, and AHR1b directly regulated their expression by binding to cis-XRE promoter elements. Last, nrf2b and nrf3 were neither induced by TCDD nor regulated by AHR1b. These results show that AHR1b transcriptionally regulates nrf genes under toxicant modulation via binding to specific XREs. These data provide a better understanding of how combinatorial molecular signaling potentially protects embryos from embryotoxic events following toxicant exposure.
Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Fator 2 Relacionado a NF-E2/genética , Receptores de Hidrocarboneto Arílico/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismoRESUMO
Malignant rhabdoid tumors (MRT) are highly aggressive pediatric cancers that respond poorly to current therapies. In this study, we screened several MRT cell lines with large-scale RNAi, CRISPR-Cas9, and small-molecule libraries to identify potential drug targets specific for these cancers. We discovered MDM2 and MDM4, the canonical negative regulators of p53, as significant vulnerabilities. Using two compounds currently in clinical development, idasanutlin (MDM2-specific) and ATSP-7041 (MDM2/4-dual), we show that MRT cells were more sensitive than other p53 wild-type cancer cell lines to inhibition of MDM2 alone as well as dual inhibition of MDM2/4. These compounds caused significant upregulation of the p53 pathway in MRT cells, and sensitivity was ablated by CRISPR-Cas9-mediated inactivation of TP53. We show that loss of SMARCB1, a subunit of the SWI/SNF (BAF) complex mutated in nearly all MRTs, sensitized cells to MDM2 and MDM2/4 inhibition by enhancing p53-mediated apoptosis. Both MDM2 and MDM2/4 inhibition slowed MRT xenograft growth in vivo, with a 5-day idasanutlin pulse causing marked regression of all xenografts, including durable complete responses in 50% of mice. Together, these studies identify a genetic connection between mutations in the SWI/SNF chromatin-remodeling complex and the tumor suppressor gene TP53 and provide preclinical evidence to support the targeting of MDM2 and MDM4 in this often-fatal pediatric cancer. SIGNIFICANCE: This study identifies two targets, MDM2 and MDM4, as vulnerabilities in a deadly pediatric cancer and provides preclinical evidence that compounds inhibiting these proteins have therapeutic potential.
Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tumor Rabdoide/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Ensuring patients fully adhere to their treatment is a major challenge for TB control programmes in resource-limited settings. This study was conducted three outpatient tuberculosis clinics in Hanoi, Vietnam. We aimed to evaluate the feasibility of using asynchronous Video Directly Observed Therapy (VDOT) to support treatment adherence among patients with bacteriologically confirmed pulmonary tuberculosis. METHODS: In this cohort study, consecutive adult patients with bacteriologically confirmed pulmonary TB were invited to enroll in a programme of VDOT. Patients were trained to use a smartphone to record themselves taking treatment for TB. Videos were uploaded to an online server and reviewed daily by study staff for at least two months. Adherence was evaluated based upon monthly pill count. RESULTS: Between November 2016 and January 2017, 40 of 78 eligible participants (51.3%) agreed to commence VDOT. Among participating patients, 27 (71.1%) of patients took all required doses. A median of 88.4% (interquartile range 75.8%-93.7%) of doses were correctly recorded and uploaded. Participants rated the VDOT interface highly, despite facing some initial technical difficulties. CONCLUSION: VDOT was feasible and resulted in high rates of treatment adherence in a resource-limited setting.