Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(1): e1010149, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990464

RESUMO

The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both 'selfish' and 'altruistic' characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Micoses/genética , Doenças das Plantas/genética , Triticum/microbiologia , Resistência à Doença/genética , Suscetibilidade a Doenças , Epistasia Genética/genética , Interações Hospedeiro-Patógeno/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Virulência/genética
2.
Phytopathology ; 111(6): 906-920, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33245254

RESUMO

The fungus Parastagonospora nodorum is a narrow host range necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) of cereals, most notably wheat (Triticum aestivum). Although commonly observed on wheat seedlings, P. nodorum infection has the greatest effect on the adult crop. It results in leaf blotch, which limits photosynthesis and thus crop growth and yield. It can also affect the wheat ear, resulting in glume blotch, which directly affects grain quality. Reports of P. nodorum fungicide resistance, the increasing use of reduced tillage agronomic practices, and high evolutionary potential of the pathogen, combined with changes in climate and agricultural environments, mean that genetic resistance to SNB remains a high priority in many regions of wheat cultivation. In this review, we summarize current information on P. nodorum population structure and its implication for improved SNB management. We then review recent advances in the genetics of host resistance to P. nodorum and the necrotrophic effectors it secretes during infection, integrating the genomic positions of these genetic loci by using the recently released wheat reference genome assembly. Finally, we discuss the genetic and genomic tools now available for SNB resistance breeding and consider future opportunities and challenges in crop health management by using the wheat-P. nodorum interaction as a model.


Assuntos
Doenças das Plantas , Triticum , Ascomicetos , Gerenciamento Clínico , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética
3.
Theor Appl Genet ; 131(6): 1223-1238, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29470621

RESUMO

KEY MESSAGE: The fungus Parastagonospora nodorum causes Septoria nodorum blotch (SNB) of wheat. A genetically diverse wheat panel was used to dissect the complexity of SNB and identify novel sources of resistance. The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch (SNB) of wheat. The pathosystem is mediated by multiple fungal necrotrophic effector-host sensitivity gene interactions that include SnToxA-Tsn1, SnTox1-Snn1, and SnTox3-Snn3. A P. nodorum strain lacking SnToxA, SnTox1, and SnTox3 (toxa13) retained wild-type-like ability to infect some modern wheat cultivars, suggesting evidence of other effector-mediated susceptibility gene interactions or the lack of host resistance genes. To identify genomic regions harbouring such loci, we examined a panel of 295 historic wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources in Russia, which is comprised of genetically diverse landraces and breeding lines registered from 1920 to 1990. The wheat panel was subjected to effector bioassays, infection with P. nodorum wild type (SN15) and toxa13. In general, SN15 was more virulent than toxa13. Insensitivity to all three effectors contributed significantly to resistance against SN15, but not toxa13. Genome-wide association studies using phenotypes from SN15 infection detected quantitative trait loci (QTL) on chromosomes 1BS (Snn1), 2DS, 5AS, 5BS (Snn3), 3AL, 4AL, 4BS, and 7AS. For toxa13 infection, a QTL was detected on 5AS (similar to SN15), plus two additional QTL on 2DL and 7DL. Analysis of resistance phenotypes indicated that plant breeders may have inadvertently selected for effector insensitivity from 1940 onwards. We identify accessions that can be used to develop bi-parental mapping populations to characterise resistance-associated alleles for subsequent introgression into modern bread wheat to minimise the impact of SNB.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Alelos , Ascomicetos/patogenicidade , Epistasia Genética , Genes de Plantas , Estudos de Associação Genética , Variação Genética , Genótipo , Haplótipos , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/microbiologia
4.
Plant J ; 87(4): 343-54, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27133896

RESUMO

Fungal effector-host sensitivity gene interactions play a key role in determining the outcome of septoria nodorum blotch disease (SNB) caused by Parastagonospora nodorum on wheat. The pathosystem is complex and mediated by interaction of multiple fungal necrotrophic effector-host sensitivity gene systems. Three effector sensitivity gene systems are well characterized in this pathosystem; SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. We tested a wheat mapping population that segregated for Snn1 and Snn3 with SN15, an aggressive P. nodorum isolate that produces SnToxA, SnTox1 and SnTox3, to study the inheritance of sensitivity to SnTox1 and SnTox3 and disease susceptibility. Interval quantitative trait locus (QTL) mapping showed that the SnTox1-Snn1 interaction was paramount in SNB development on both seedlings and adult plants. No effect of the SnTox3-Snn3 interaction was observed under SN15 infection. The SnTox3-Snn3 interaction was however, detected in a strain of SN15 in which SnTox1 had been deleted (tox1-6). Gene expression analysis indicates increased SnTox3 expression in tox1-6 compared with SN15. This indicates that the failure to detect the SnTox3-Snn3 interaction in SN15 is due - at least in part - to suppressed expression of SnTox3 mediated by SnTox1. Furthermore, infection of the mapping population with a strain deleted in SnToxA, SnTox1 and SnTox3 (toxa13) unmasked a significant SNB QTL on 2DS where the SnTox2 effector sensitivity gene, Snn2, is located. This QTL was not observed in SN15 and tox1-6 infections and thus suggesting that SnToxA and/or SnTox3 were epistatic. Additional QTLs responding to SNB and effectors sensitivity were detected on 2AS1 and 3AL.


Assuntos
Ascomicetos/genética , Epistasia Genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Triticum/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Micotoxinas/genética , Micotoxinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/microbiologia , Triticum/metabolismo , Triticum/microbiologia
5.
Breed Sci ; 63(3): 292-300, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24273424

RESUMO

We report the development of a Diversity Arrays Technology (DArT) marker panel and its utilisation in the development of an integrated genetic linkage map of white lupin (Lupinus albus L.) using an F8 recombinant inbred line population derived from Kiev Mutant/P27174. One hundred and thirty-six DArT markers were merged into the first genetic linkage map composed of 220 amplified fragment length polymorphisms (AFLPs) and 105 genic markers. The integrated map consists of 38 linkage groups of 441 markers and spans a total length of 2,169 cM, with an average interval size of 4.6 cM. The DArT markers exhibited good genome coverage and were associated with previously identified genic and AFLP markers linked with quantitative trait loci for anthracnose resistance, flowering time and alkaloid content. The improved genetic linkage map of white lupin will aid in the identification of markers for traits of interest and future syntenic studies.

6.
Mol Metab ; 73: 101737, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182562

RESUMO

OBJECTIVE: To date, the only enzyme known to be responsible for the hydrolysis of cholesteryl esters and triacylglycerols in the lysosome at acidic pH is lysosomal acid lipase (LAL). Lipid malabsorption in the small intestine (SI), accompanied by macrophage infiltration, is one of the most common pathological features of LAL deficiency. However, the exact role of LAL in intestinal lipid metabolism is still unknown. METHODS: We collected three parts of the SI (duodenum, jejunum, ileum) from mice with a global (LAL KO) or intestine-specific deletion of LAL (iLAL KO) and corresponding controls. RESULTS: We observed infiltration of lipid-associated macrophages into the lamina propria, where neutral lipids accumulate massively in the SI of LAL KO mice. In addition, LAL KO mice absorb less dietary lipids but have accelerated basolateral lipid uptake, secrete fewer chylomicrons, and have increased fecal lipid loss. Inflammatory markers and genes involved in lipid metabolism were overexpressed in the duodenum of old but not in younger LAL KO mice. Despite the significant reduction of LAL activity in enterocytes of enterocyte-specific (iLAL) KO mice, villous morphology, intestinal lipid concentrations, expression of lipid transporters and inflammatory genes, as well as lipoprotein secretion were comparable to control mice. CONCLUSIONS: We conclude that loss of LAL only in enterocytes is insufficient to cause lipid deposition in the SI, suggesting that infiltrating macrophages are the key players in this process.


Assuntos
Intestinos , Metabolismo dos Lipídeos , Camundongos , Animais , Ésteres do Colesterol/metabolismo , Macrófagos/metabolismo , Doença de Wolman
7.
Sci Rep ; 11(1): 10085, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980869

RESUMO

The fungus Parastagonospora nodorum is the causal agent of septoria nodorum leaf blotch (SNB) and glume blotch which are common in many wheat growing regions in the world. The disease is complex and could be explained by multiple interactions between necrotrophic effectors secreted by the pathogen and matching susceptibility genes in wheat. An Australian P. nodorum population was clustered into five groups with contrasting properties. This study was set to identify their pathogenicity profiles using a diverse wheat panel of 134 accessions which are insensitive to SnToxA and SnTox1 in both in vitro and in vivo conditions. SNB seedling resistance/susceptibility to five representative isolates from the five clusters, responses to crude culture-filtrates (CFs) of three isolates and sensitivity to SnTox3 semi-purified effector together with 11,455 SNP markers have been used for linkage disequilibrium (LD) and association analyses. While quantitative trait loci (QTL) on 1D, 2A, 2B, 4B, 5B, 6A, 6B, 7A, 7D chromosomes were consistently detected across isolates and conditions, distinct patterns and isolate specific QTL were also observed among these isolates. In this study, SnTox3-Snn3-B1 interaction for the first time in Australia and SnTox3-Snn3-D1 interaction for the first time in bread wheat were found active using wild-type isolates. These findings could be due to new SnTox3 haplotype/isoform and exotic CIMMYT/ICARDA and Vavilov germplasm used, respectively. This study could provide useful information for dissecting novel and different SNB disease components, helping to prioritise research targets and contributing valuable information on genetic loci/markers for marker-assisted selection in SNB resistance wheat breeding programme.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Austrália , Genoma Fúngico , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/microbiologia , Virulência
8.
Plant Genome ; 12(3): 1-15, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-33016591

RESUMO

CORE IDEAS: First genome-wide association mapping of adult plant Septoria nodorum blotch resistance. Some adult plant resistance loci were shared with seedling resistance loci. Other adult plant resistance loci were significant across environments. Resistant haplotypes were identified, which can be used for breeding. Parastagonospora nodorum is the causal agent of Septoria nodorum leaf blotch (SNB) in wheat (Triticum aestivum L.). It is the most important leaf blotch pathogen in Norwegian spring wheat. Several quantitative trait loci (QTL) for SNB susceptibility have been identified. Some of these QTL are the result of underlying gene-for-gene interactions involving necrotrophic effectors (NEs) and corresponding sensitivity (Snn) genes. A collection of diverse spring wheat lines was evaluated for SNB resistance and susceptibility over seven growing seasons in the field. In addition, wheat seedlings were inoculated and infiltrated with culture filtrates (CFs) from four single spore isolates and infiltrated with semipurified NEs (SnToxA, SnTox1, and SnTox3) under greenhouse conditions. In adult plants, the most stable SNB resistance QTL were located on chromosomes 2B, 2D, 4A, 4B, 5A, 6B, 7A, and 7B. The QTL on chromosome 2D was effective most years in the field. At the seedling stage, the most significant QTL after inoculation were located on chromosomes 1A, 1B, 3A, 4B, 5B, 6B, 7A, and 7B. The QTL on chromosomes 3A and 6B were significant both after inoculation and CF infiltration, indicating the presence of novel NE-Snn interactions. The QTL on chromosomes 4B and 7A were significant in both seedlings and adult plants. Correlations between SnToxA sensitivity and disease severity in the field were significant. To our knowledge, this is the first genome-wide association mapping study (GWAS) to investigate SNB resistance at the adult plant stage under field conditions.


Assuntos
Estudo de Associação Genômica Ampla , Triticum/genética , Fenótipo , Doenças das Plantas/genética , Estações do Ano
9.
Sci Rep ; 9(1): 15884, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685928

RESUMO

The fungus Parastagonospora nodorum infects wheat through the use of necrotrophic effector (NE) proteins that cause host-specific tissue necrosis. The Zn2Cys6 transcription factor PnPf2 positively regulates NE gene expression and is required for virulence on wheat. Little is known about other downstream targets of PnPf2. We compared the transcriptomes of the P. nodorum wildtype and a strain deleted in PnPf2 (pf2-69) during in vitro growth and host infection to further elucidate targets of PnPf2 signalling. Gene ontology enrichment analysis of the differentially expressed (DE) genes revealed that genes associated with plant cell wall degradation and proteolysis were enriched in down-regulated DE gene sets in pf2-69 compared to SN15. In contrast, genes associated with redox control, nutrient and ion transport were up-regulated in the mutant. Further analysis of the DE gene set revealed that PnPf2 positively regulates twelve genes that encode effector-like proteins. Two of these genes encode proteins with homology to previously characterised effectors in other fungal phytopathogens. In addition to modulating effector gene expression, PnPf2 may play a broader role in the establishment of a necrotrophic lifestyle by orchestrating the expression of genes associated with plant cell wall degradation and nutrient assimilation.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Motivos de Aminoácidos , Ascomicetos/patogenicidade , Parede Celular/metabolismo , Regulação para Baixo , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Análise de Componente Principal , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Triticum/microbiologia , Regulação para Cima , Virulência/genética
10.
Front Plant Sci ; 10: 1785, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082346

RESUMO

INTRODUCTION: Septoria nodorum blotch (SNB) is a complex fungal disease of wheat caused by the Dothideomycete fungal pathogen Parastagonospora nodorum. The fungus infects through the use of necrotrophic effectors (NEs) that cause necrosis on hosts carrying matching dominant susceptibility genes. The Western Australia (WA) wheatbelt is a SNB "hot spot" and experiences significant under favorable conditions. Consequently, SNB has been a major target for breeders in WA for many years. MATERIALS AND METHODS: In this study, we assembled a panel of 155 WA P. nodorum isolates collected over a 44-year period and compared them to 23 isolates from France and the USA using 28 SSR loci. RESULTS: The WA P. nodorum population was clustered into five groups with contrasting properties. 80% of the studied isolates were assigned to two core groups found throughout the collection location and time. The other three non-core groups that encompassed transient and emergent populations were found in restricted locations and time. Changes in group genotypes occurred during periods that coincided with the mass adoption of a single or a small group of widely planted wheat cultivars. When introduced, these cultivars had high scores for SNB resistance. However, the field resistance of these new cultivars often declined over subsequent seasons prompting their replacement with new, more resistant varieties. Pathogenicity assays showed that newly emerged isolates non-core are more pathogenic than old isolates. It is likely that the non-core groups were repeatedly selected for increased virulence on the contemporary popular cultivars. DISCUSSION: The low level of genetic diversity within the non-core groups, difference in virulence, low abundance, and restriction to limited locations suggest that these populations more vulnerable to a population crash when the cultivar was replaced by one that was genetically different and more resistant. We characterize the observed pattern as a low-amplitude boom-and-bust cycle in contrast with the classical high amplitude boom-and-bust cycles seen for biotrophic pathogens where the contrast between resistance and susceptibility is typically much greater. Implications of the results are discussed relating to breeding strategies for more sustainable SNB resistance and more generally for pathogens with NEs.

11.
BMC Genomics ; 9: 380, 2008 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-18691425

RESUMO

BACKGROUND: The development of genetic markers is complex and costly in species with little pre-existing genomic information. Faba bean possesses one of the largest and least studied genomes among cultivated crop plants and no gene-based genetic maps exist. Gene-based orthologous markers allow chromosomal regions and levels of synteny to be characterised between species, reveal phylogenetic relationships and chromosomal evolution, and enable targeted identification of markers for crop breeding. In this study orthologous codominant cross-species markers have been deployed to produce the first exclusively gene-based genetic linkage map of faba bean (Vicia faba), using an F6 population developed from a cross between the lines Vf6 (equina type) and Vf27 (paucijuga type). RESULTS: Of 796 intron-targeted amplified polymorphic (ITAP) markers screened, 151 markers could be used to construct a comparative genetic map. Linkage analysis revealed seven major and five small linkage groups (LGs), one pair and 12 unlinked markers. Each LG was comprised of three to 30 markers and varied in length from 23.6 cM to 324.8 cM. The map spanned a total length of 1685.8 cM. A simple and direct macrosyntenic relationship between faba bean and Medicago truncatula was evident, while faba bean and lentil shared a common rearrangement relative to M. truncatula. One hundred and four of the 127 mapped markers in the 12 LGs, which were previously assigned to M. truncatula genetic and physical maps, were found in regions syntenic between the faba bean and M. truncatula genomes. However chromosomal rearrangements were observed that could explain the difference in chromosome numbers between these three legume species. These rearrangements suggested high conservation of M. truncatula chromosomes 1, 5 and 8; moderate conservation of chromosomes 2, 3, 4 and 7 and no conservation with M. truncatula chromosome 6. Multiple PCR amplicons and comparative mapping were suggestive of small-scale duplication events in faba bean. This study also provides a preliminary indication for finer scale macrosynteny between M. truncatula, lentil and faba bean. Markers originally designed from genes on the same M. truncatula BACs were found to be grouped together in corresponding syntenic areas in lentil and faba bean. CONCLUSION: Despite the large size of the faba bean genome, comparative mapping did not reveal evidence for polyploidisation, segmental duplication, or significant rearrangements compared to M. truncatula, although a bias in the use of single locus markers may have limited the detection of duplications. Non-coding repetitive DNA or transposable element content provides a possible explanation for the difference in genome sizes. Similar patterns of rearrangements in faba bean and lentil compared to M. truncatula support phylogenetic studies dividing these species into the tribes Viceae and Trifoliae. However, substantial macrosynteny was apparent between faba bean and M. truncatula, with the exception of chromosome 6 where no orthologous markers were found, confirming previous investigations suggesting chromosome 6 is atypical. The composite map, anchored with orthologous markers mapped in M. truncatula, provides a central reference map for future use of genomic and genetic information in faba bean genetic analysis and breeding.


Assuntos
Genoma de Planta , Lens (Planta)/genética , Vicia faba/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Sequência Conservada , Primers do DNA/genética , DNA de Plantas/genética , Marcadores Genéticos , Genômica , Hibridização Genética , Medicago truncatula/genética , Especificidade da Espécie
12.
Front Plant Sci ; 9: 881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30022985

RESUMO

Parastagonospora nodorum is a necrotrophic fungal pathogen of wheat (Triticum aestivum L.), one of the world's most important crops. P. nodorum mediates host cell death using proteinaceous necrotrophic effectors, presumably liberating nutrients that allow the infection process to continue. The identification of pathogen effectors has allowed host genetic resistance mechanisms to be separated into their constituent parts. In P. nodorum, three proteinaceous effectors have been cloned: SnToxA, SnTox1, and SnTox3. Here, we survey sensitivity to all three effectors in a panel of 480 European wheat varieties, and fine-map the wheat SnTox3 sensitivity locus Snn3-B1 using genome-wide association scans (GWAS) and an eight-founder wheat multi-parent advanced generation inter-cross (MAGIC) population. Using a Bonferroni corrected P ≤ 0.05 significance threshold, GWAS identified 10 significant markers defining a single locus, Snn3-B1, located on the short arm of chromosome 5B explaining 32% of the phenotypic variation [peak single nucleotide polymorphisms (SNPs), Excalibur_c47452_183 and GENE-3324_338, -log10P = 20.44]. Single marker analysis of SnTox3 sensitivity in the MAGIC population located Snn3-B1 via five significant SNPs, defining a 6.2-kb region that included the two peak SNPs identified in the association mapping panel. Accordingly, SNP Excalibur_c47452_183 was converted to the KASP genotyping system, and validated by screening a subset of 95 wheat varieties, providing a valuable resource for marker assisted breeding and for further genetic investigation. In addition, composite interval mapping in the MAGIC population identified six minor SnTox3 sensitivity quantitative trait loci, on chromosomes 2A (QTox3.niab-2A.1, P-value = 9.17-7), 2B (QTox3.niab-2B.1, P = 0.018), 3B (QTox3.niab-3B.1, P = 48.51-4), 4D (QTox3.niab-4D.1, P = 0.028), 6A (QTox3.niab-6A.1, P = 8.51-4), and 7B (QTox3.niab-7B.1, P = 0.020), each accounting for between 3.1 and 6.0 % of the phenotypic variance. Collectively, the outcomes of this study provides breeders with knowledge and resources regarding the sensitivity of European wheat germplasm to P. nodorum effectors, as well as simple diagnostic markers for determining allelic state at Snn3-B1.

13.
DNA Res ; 14(2): 59-70, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17526914

RESUMO

We report the first genetic linkage map of white lupin (Lupinus albus L.). An F8 recombinant inbred line population developed from Kiev mutant x P27174 was mapped with 220 amplified fragment length polymorphism and 105 gene-based markers. The genetic map consists of 28 main linkage groups (LGs) that varied in length from 22.7 cM to 246.5 cM and spanned a total length of 2951 cM. There were seven additional pairs and 15 unlinked markers, and 12.8% of markers showed segregation distortion at P < 0.05. Syntenic relationships between Medicago truncatula and L. albus were complex. Forty-five orthologous markers that mapped between M. truncatula and L. albus identified 17 small syntenic blocks, and each M. truncatula chromosome aligned to between one and six syntenic blocks in L. albus. Genetic mapping of three important traits: anthracnose resistance, flowering time, and alkaloid content allowed loci governing these traits to be defined. Two quantitative trait loci (QTLs) with significant effects were identified for anthracnose resistance on LG4 and LG17, and two QTLs were detected for flowering time on the top of LG1 and LG3. Alkaloid content was mapped as a Mendelian trait to LG11.


Assuntos
Lupinus/genética , Alcaloides/metabolismo , Evolução Biológica , Mapeamento Cromossômico , Flores/crescimento & desenvolvimento , Lupinus/crescimento & desenvolvimento , Lupinus/metabolismo , Lupinus/microbiologia , Medicago truncatula/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Especificidade da Espécie
14.
Mol Plant Pathol ; 18(3): 420-434, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27860150

RESUMO

The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch of wheat (Triticum aestivum). The interaction is mediated by multiple fungal necrotrophic effector-dominant host sensitivity gene interactions. The three best-characterized effector-sensitivity gene systems are SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. These effector genes are highly expressed during early infection, but expression decreases as the infection progresses to tissue necrosis and sporulation. However, the mechanism of regulation is unknown. We have identified and functionally characterized a gene, referred to as PnPf2, which encodes a putative zinc finger transcription factor. PnPf2 deletion resulted in the down-regulation of SnToxA and SnTox3 expression. Virulence on Tsn1 and Snn3 wheat cultivars was strongly reduced. The SnTox1-Snn1 interaction remained unaffected. Furthermore, we have also identified and deleted an orthologous PtrPf2 from the tan spot fungus Pyrenophora tritici-repentis which possesses a near-identical ToxA that was acquired from P. nodorum via horizontal gene transfer. PtrPf2 deletion also resulted in the down-regulation of PtrToxA expression and a near-complete loss of virulence on Tsn1 wheat. We have demonstrated, for the first time, evidence for a functionally conserved signalling component that plays a role in the regulation of a common/horizontally transferred effector found in two major fungal pathogens of wheat.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Sequência Conservada , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Especificidade de Hospedeiro/genética , Fatores de Transcrição/metabolismo , Triticum/microbiologia , Ascomicetos/crescimento & desenvolvimento , Epistasia Genética , Proteínas Fúngicas/genética , Deleção de Genes , Filogenia , Doenças das Plantas/microbiologia , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Esporos Fúngicos/fisiologia , Fatores de Transcrição/genética , Virulência/genética , Dedos de Zinco
15.
Front Plant Sci ; 6: 501, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217355

RESUMO

Necrotrophic diseases of wheat cause major losses in most wheat growing areas of world. Tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch (SNB; Parastagonospora nodorum) have been shown to reduce yields by 10-20% across entire agri-ecological zones despite the application of fungicides and a heavy focus over the last 30 years on resistance breeding. Efforts by breeders to improve the resistance of cultivars has been compromised by the universal finding that resistance was quantitative and governed by multiple quantitative trait loci (QTL). Most QTL had a limited effect that was hard to measure precisely and varied significantly from site to site and season to season. The discovery of necrotrophic effectors has given breeding for disease resistance new methods and tools. In the case of tan spot in West Australia, a single effector, PtrToxA and its recogniser gene Tsn1, has a dominating impact in disease resistance. The delivery of ToxA to breeders has had a major impact on cultivar choice and breeding strategies. For P. nodorum, three effectors - SnToxA, SnTox1, and SnTox3 - have been well characterized. Unlike tan spot, no one effector has a dominating role. Genetic analysis of various mapping populations and pathogen isolates has shown that different effectors have varying impact and that epistatic interactions also occur. As a result of these factors the deployment of these effectors for SNB resistance breeding is more complex. We have deleted the three effectors in a strain of P. nodorum and measured effector activity and disease potential of the triple knockout mutant. The culture filtrate causes necrosis in several cultivars and the strain causes disease, albeit the overall levels are less than in the wild type. Modeling of the field disease resistance scores of cultivars from their reactions to the microbially expressed effectors SnToxA, SnTox1, and SnTox3 is significantly improved by including the response to the triple knockout mutant culture filtrate. This indicates that one or more further effectors are secreted into the culture filtrate. We conclude that the in vitro-secreted necrotrophic effectors explain a very large part of the disease response of wheat germplasm and that this method of resistance breeding promises to further reduce the impact of these globally significant diseases.

16.
Theor Appl Genet ; 114(3): 549-58, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17119911

RESUMO

The first predominantly gene-based genetic linkage map of lentil (Lens culinaris ssp. culinaris) was constructed using an F5 population developed from a cross between the cultivars Digger (ILL5722) and Northfield (ILL5588) using 79 intron-targeted amplified polymorphic (ITAP) and 18 genomic simple sequence repeat (SSR) markers. Linkage analysis revealed seven linkage groups (LGs) comprised of 5-25 markers that varied in length from 80.2 to 274.6 cM. The genome map spanned a total length of 928.4 cM. Clear evidence of a simple and direct macrosyntenic relationship between lentil and Medicago truncatula was observed. Sixty-six out of the 71 gene-based markers, which were previously assigned to M. truncatula genetic and physical maps, were found in regions syntenic between the Lens c. ssp. culinaris and M. truncatula genomes. However, there was evidence of moderate chromosomal rearrangements which may account for the difference in chromosome numbers between these two legume species. Eighteen common SSR markers were used to connect the current map with the most comprehensive and recent map that exists for lentil, providing the syntenic context of four important domestication traits. The composite map presented, anchored with orthologous markers mapped in M. truncatula, provides a strong foundation for the future use of genomic and genetic information in lentil genetic analysis and breeding.


Assuntos
Lens (Planta)/genética , Medicago truncatula/genética , Sintenia/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Técnicas de Amplificação de Ácido Nucleico
17.
Funct Plant Biol ; 33(8): 775-782, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689288

RESUMO

Orthologous markers transferable between distantly related legume species allow for the rapid generation of genetic maps in species where there is little pre-existing genomic or EST information. We are using the model legume Medicago truncatula Gaertn. to develop such markers in legumes of importance to Australian agriculture. This will enable the construction of comparative genetic maps, help to determine patterns of chromosomal evolution in the legume family, and characterise syntenic relationships between M. truncatula and cultivated legumes. This information can then be used to identify markers that are tightly linked to the genes of interest, candidate gene(s) for a trait, and expedite the isolation of such genes. Among the Papilionoideae, we compared ESTs from the phylogenetically distant species, M. truncatula, Lupinus albus and Glycine max, to produce 500 intron-targeted amplified polymorphic markers (ITAPs). In addition to 126 M. truncatula cross-species markers from Department of Plant Pathology, University of California (USA), these markers were used to generate comparative genetic maps of lentil (Lens culinaris Medik.) and white lupin (Lupinus albus Linn.). Our results showed that 90% of the ITAPs markers amplified genomic DNA in M. truncatula, 80% in Lupinus albus, and 70% in Lens culinaris. The comparative map of Lens culinaris was constructed based on 79 ITAP markers. The Lupinus albus comparative map was developed from 105 gene-based markers together with 223 AFLP markers. Although a direct and simple syntenic relationship was observed between M. truncatula and Lens culinaris genomes, there is evidence of moderate chromosomal rearrangement. This may account for the different chromosome numbers in the two species. A more complicated pattern among homologous blocks was apparent between the Lupinus albus and M. truncatula genomes.

18.
Theor Appl Genet ; 113(2): 225-38, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16791689

RESUMO

We report the first gene-based linkage map of Lupinus angustifolius (narrow-leafed lupin) and its comparison to the partially sequenced genome of Medicago truncatula. The map comprises 382 loci in 20 major linkage groups, two triplets, three pairs and 11 unlinked loci and is 1,846 cM in length. The map was generated from the segregation of 163 RFLP markers, 135 gene-based PCR markers, 75 AFLP and 4 AFLP-derived SCAR markers in a mapping population of 93 recombinant inbred lines, derived from a cross between domesticated and wild-type parents. This enabled the mapping of five major genes controlling key domestication traits in L. angustifolius. Using marker sequence data, the L. angustifolius genetic map was compared to the partially completed M. truncatula genome sequence. We found evidence of conserved synteny in some regions of the genome despite the wide evolutionary distance between these legume species. We also found new evidence of widespread duplication within the L. angustifolius genome.


Assuntos
Genes de Plantas , Lupinus/genética , Medicago/genética , Alelos , Frequência do Gene , Ligação Genética , Marcadores Genéticos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa