RESUMO
Lateral inhibition mediates alternative cell fate decision and produces regular cell fate patterns with fate symmetry breaking (SB) relying on the amplification of small stochastic differences in Notch activity via an intercellular negative feedback loop. Here, we used quantitative live imaging of endogenous Scute (Sc), a proneural factor, and of a Notch activity reporter to study the emergence of Sensory Organ Precursor cells (SOPs) in the pupal abdomen of Drosophila. SB was observed at low Sc levels and was not preceded by a phase of intermediate Sc expression and Notch activity. Thus, mutual inhibition may only be transient in this context. In support of the intercellular feedback loop model, cell-to-cell variations in Sc levels promoted fate divergence. The size of the apical area of competing cells did not detectably bias this fate choice. Surprisingly, cells that were in direct contact at the time of SB could adopt the SOP fate, albeit at low frequency (10%). These lateral inhibition defects were corrected by cellular rearrangements, not cell fate change, highlighting the role of cell-cell intercalation in pattern refinement.
RESUMO
Escherichia coli exhibit extensive genetic diversity at the genome level, particularly within their accessory genome. The tRNA integrated genomic islands (GIs), a part of the E. coli accessory genome, play an important role in pathogenicity. However, studies examining the evolution of GIs have been challenging due to their large size, considerable gene content variation and fragmented assembly in draft genomes. Here we examined the evolution of the GI integrated at pheV-tRNA (GI-pheV), with a primary focus on uropathogenic E. coli (UPEC) and the globally disseminated multidrug resistant ST131 clone. We show the gene content of GI-pheV is highly diverse and arranged in a modular configuration, with the P4 integrase encoding gene intP4 the only conserved gene. Despite this diversity, the GI-pheV gene content displayed conserved features among strains from the same pathotype. In ST131, GI-pheV corresponding to the reference strain EC958 (EC958_GI-pheV) was found in ~90% of strains. Phylogenetic analyses suggested that GI-pheV in ST131 has evolved together with the core genome, with the loss/gain of specific modules (or the entire GI) linked to strain specific events. Overall, we show GI-pheV exhibits a dynamic evolutionary pathway, in which modules and genes have evolved through multiple events including insertions, deletions and recombination.
Assuntos
Escherichia coli , Evolução Molecular , Ilhas Genômicas , Filogenia , Ilhas Genômicas/genética , Escherichia coli/genética , Genoma Bacteriano , RNA de Transferência/genética , Escherichia coli Uropatogênica/genética , Variação Genética , Farmacorresistência Bacteriana Múltipla/genéticaRESUMO
Plasmids are major drivers of increasing antibiotic resistance, necessitating an urgent need to understand their biology. Here we describe a detailed dissection of the molecular components controlling the genetics of I-complex plasmids, a group of antibiotic resistance plasmids found frequently in pathogenic Escherichia coli and other Enterobacteriaceae that cause significant human disease. We show these plasmids cluster into four distinct subgroups, with the prototype IncI1 plasmid R64 subgroup displaying low nucleotide sequence conservation to other I-complex plasmids. Using pMS7163B, an I-complex plasmid distantly related to R64, we performed a high-resolution transposon-based genetic screen and defined genes involved in replication, stability, and conjugative transfer. We identified the replicon and a partitioning system as essential for replication/stability. Genes required for conjugation included the type IV secretion system, relaxosome, and several uncharacterised genes located in the pMS7163B leading transfer region that exhibited an upstream strand-specific transposon insertion bias. The overexpression of these genes severely impacted host cell growth or reduced fitness during mixed competitive growth, demonstrating that their expression must be controlled to avoid deleterious impacts. These genes were present in >80% of all I-complex plasmids and broadly conserved across multiple plasmid incompatibility groups, implicating an important role in plasmid dissemination.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Plasmídeos/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Enterobacteriaceae/genética , Sequência de Bases , Conjugação GenéticaRESUMO
TrackMate is an automated tracking software used to analyze bioimages and is distributed as a Fiji plugin. Here, we introduce a new version of TrackMate. TrackMate 7 is built to address the broad spectrum of modern challenges researchers face by integrating state-of-the-art segmentation algorithms into tracking pipelines. We illustrate qualitatively and quantitatively that these new capabilities function effectively across a wide range of bio-imaging experiments.
Assuntos
Algoritmos , Software , Processamento de Imagem Assistida por Computador/métodosRESUMO
The grey-shanked douc langur (Pygathrix cinerea) is a recently described, critically endangered primate, endemic to Vietnam. In this study, we describe the Central Highland species' complete mitochondrial genome (mitogenome-mtDNA). It is a circular molecule with a length of 16,541 base pairs (bp). The genome consists of 37 genes, consistent with those found in most other vertebrates, including 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs. A comparison with the mitogenomes of more than 50 primates showed that the mitogenome of Vietnamese Central Highland Pygathrix cinerea has a conservative gene order. We identified 43 nucleotide differences when comparing this genome with a previously published mitogenome of Pygathrix cinerea. It is evident that there are distinct differences between the Pygathrix cinerea we are currently studying and other Pygathrix cinerea specimens. These differences are unlikely to be solely the result of sequencing errors, as the mitogenomes were generated using high-quality methods. The genetic divergence observed between the two Pygathrix cinerea mitogenomes implies the potential existence of at least two distinct lineages or forms of this primate species within its native range in Vietnam.
RESUMO
MOTIVATION: Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR-peptide prediction built upon a large dataset combining existing publicly available data is still needed. RESULTS: We collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR-peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR-peptide interactions. epiTCR used simple input of TCR CDR3ß sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy. AVAILABILITY AND IMPLEMENTATION: epiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR).
Assuntos
Antígenos , Peptídeos , Humanos , Peptídeos/metabolismo , Antígenos/química , Epitopos/química , Receptores de Antígenos de Linfócitos T/química , Linfócitos T/metabolismoRESUMO
BACKGROUND: Cell free DNA (cfDNA)-based assays hold great potential in detecting early cancer signals yet determining the tissue-of-origin (TOO) for cancer signals remains a challenging task. Here, we investigated the contribution of a methylation atlas to TOO detection in low depth cfDNA samples. METHODS: We constructed a tumor-specific methylation atlas (TSMA) using whole-genome bisulfite sequencing (WGBS) data from five types of tumor tissues (breast, colorectal, gastric, liver and lung cancer) and paired white blood cells (WBC). TSMA was used with a non-negative least square matrix factorization (NNLS) deconvolution algorithm to identify the abundance of tumor tissue types in a WGBS sample. We showed that TSMA worked well with tumor tissue but struggled with cfDNA samples due to the overwhelming amount of WBC-derived DNA. To construct a model for TOO, we adopted the multi-modal strategy and used as inputs the combination of deconvolution scores from TSMA with other features of cfDNA. RESULTS: Our final model comprised of a graph convolutional neural network using deconvolution scores and genome-wide methylation density features, which achieved an accuracy of 69% in a held-out validation dataset of 239 low-depth cfDNA samples. CONCLUSIONS: In conclusion, we have demonstrated that our TSMA in combination with other cfDNA features can improve TOO detection in low-depth cfDNA samples.
Assuntos
Metilação de DNA , Genoma Humano , Neoplasias , Redes Neurais de Computação , Humanos , Metilação de DNA/genética , Neoplasias/genética , Neoplasias/sangue , Neoplasias/diagnóstico , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Especificidade de Órgãos/genética , AlgoritmosRESUMO
Extra-intestinal pathogenic Escherichia coli (ExPEC) belong to a critical priority group of antibiotic resistant pathogens. ExPEC establish gut reservoirs that seed infection of the urinary tract and bloodstream, but the mechanisms of gut colonisation remain to be properly understood. Ucl fimbriae are attachment organelles that facilitate ExPEC adherence. Here, we investigated cellular receptors for Ucl fimbriae and Ucl expression to define molecular mechanisms of Ucl-mediated ExPEC colonisation of the gut. We demonstrate differential expression of Ucl fimbriae in ExPEC sequence types associated with disseminated infection. Genome editing of strains from two common sequence types, F11 (ST127) and UTI89 (ST95), identified a single nucleotide polymorphism in the ucl promoter that changes fimbriae expression via activation by the global stress-response regulator OxyR, leading to altered gut colonisation. Structure-function analysis of the Ucl fimbriae tip-adhesin (UclD) identified high-affinity glycan receptor targets, with highest affinity for sialyllacto-N-fucopentose VI, a structure likely to be expressed on the gut epithelium. Comparison of the UclD adhesin to the homologous UcaD tip-adhesin from Proteus mirabilis revealed that although they possess a similar tertiary structure, apart from lacto-N-fucopentose VI that bound to both adhesins at low-micromolar affinity, they recognize different fucose- and glucose-containing oligosaccharides. Competitive surface plasmon resonance analysis together with co-structural investigation of UcaD in complex with monosaccharides revealed a broad-specificity glycan binding pocket shared between UcaD and UclD that could accommodate these interactions. Overall, our study describes a mechanism of adaptation that augments establishment of an ExPEC gut reservoir to seed disseminated infections, providing a pathway for the development of targeted anti-adhesion therapeutics.
Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Adesinas Bacterianas/metabolismo , Adesinas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/metabolismo , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Humanos , Enteropatias , Polissacarídeos/metabolismoRESUMO
Complementation remains a foundation for demonstrating molecular Koch's postulates. While this is frequently achieved using plasmids, limitations such as increased gene copy number and the need for antibiotic supplementation to avoid plasmid loss can restrict their use. Chromosomal integration systems using the Tn7 transposon provide an alternative to plasmids for complementation and facilitate the stable insertion of genes at the chromosomal attTn7 site without the need for selection pressure. Here, we enhanced the utility of mini-Tn7 insertion vectors by the addition of inducible (Pcym) and constitutive (PcL and PrpsM) promoters, allowing differential transcriptional control of genes integrated into the chromosome. We validated the utility of these promoters by cloning the gfp gene, encoding green fluorescent protein, downstream of each promoter and integrating a mini-Tn7 construct harboring these elements into the attTn7 site on the chromosome of the Escherichia coli K-12 strain MG1655. The PcL and PrpsM promoters provided equivalent levels of GFP expression and offered flexibility based on the target host strain. Activation of the tightly regulated Pcym promoter with its inducer cumate resulted in tunable expression of GFP in a dose-dependent manner. We further demonstrated the tight control of the Pcym promoter using the toxic impCAB genes, and the expression of which is detrimental to E. coli viability. Together, these modified mini-Tn7 vectors allowing differential control of genes integrated into the chromosome at a conserved site offer an efficient system for complementation where plasmid use is restricted.IMPORTANCEChromosomal integration using mini-Tn7 vectors provides an efficient means to insert genes into the chromosome of many gram-negative bacteria. Insertion occurs at a conserved site and allows for the stable integration of genes in single copy. While this system has multiple benefits for enabling complementation, a cornerstone for fulfilling molecular Koch's postulates, greater flexibility for controlled gene expression would enhance its utility. Here, we have added to the function of mini-Tn7 vectors by the addition of inducible and constitutive promoters and demonstrated their capacity to drive the controlled expression of target genes integrated into the chromosome. In addition to complementation, these modified vectors offer broad application for other approaches including chromosomal tagging, in vivo expression, metabolic engineering, and synthetic biology.
Assuntos
Cromossomos Bacterianos , Elementos de DNA Transponíveis , Vetores Genéticos , Elementos de DNA Transponíveis/genética , Vetores Genéticos/genética , Cromossomos Bacterianos/genética , Regiões Promotoras Genéticas , Regulação Bacteriana da Expressão Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Escherichia coli K12/genética , Plasmídeos/genéticaRESUMO
OBJECTIVES: The Siemens Point-of-Care Testing (POC) Atellica® VTLi high-sensitivity troponin I (hsTnI) device has been previously validated. Verification independently provides evidence that an analytical procedure fulfils concordance with laboratory assays, imprecision, and hemolysis interference requirements. METHODS: Five whole blood samples spanning the measuring interval were analysed 20 times in succession. Hemolysis interference was assessed at three troponin concentrations by spiking five hemolysate concentrations to plasma to achieve free hemoglobin concentrations 35-1,000â¯mg/dL. Concordance between whole blood (VTLi) and plasma on laboratory analysers (Beckman, Roche, Siemens) was assessed by Pearson correlation and kappa statistics at the (LOQ) and upper reference limit (URL). This was repeated for frozen plasma samples. RESULTS: Coefficients of variation for whole blood were <10â¯% for whole blood troponin concentrations of 9.2 and 15.9â¯ng/L, thus below the URL. Hemolysis positively interfered; at 250â¯mg/dL affecting the low troponin sample (+3â¯ng/L; +60â¯%) and high troponin sample (+37â¯ng/L; +24â¯%). Correlation coefficients were 0.98, 0.90 and 0.97 between VTLi and Beckman, Roche and Siemens assays respectively. Corresponding kappa statistics were 0.80, 0.73 and 0.84 at the LOQ and 0.70, 0.44 and 0.67 at the URL. CONCLUSIONS: Concordances between VTLi and laboratory assays were at least non-inferior to those between laboratory assays. Imprecision met manufacturer claims and was consistent with a high sensitivity assay. There is potential for hemolysis interference, highlighting the need for quality samples. The results support performance characteristics previously reported in validation studies, and the device offers acceptable performance for use within intended medical settings.
RESUMO
Aim: Cancers lacking standard screening (LSS) options account for approximately 70% of cancer-related deaths due to late-stage diagnosis. Circulating tumor DNA (ctDNA) is a promising biomarker for multi-cancer early detection. We previously developed SPOT-MAS, a multimodal ctDNA-based assay analyzing methylation and fragmentomic profiles, effective in detecting common cancers (breast, colorectal, liver, lung and gastric). This study extends the analysis to five LSS cancers: endometrial, esophageal, head and neck, ovarian and pancreatic.Methods: SPOT-MAS was applied to profile cfDNA methylation and fragmentomic patterns in 739 healthy individuals and 135 LSS cancer patients.Results: We identified 347 differentially methylated regions and observed genome-wide hypomethylation across all five LSS cancers. Esophageal and head and neck cancers showed an enrichment of short cfDNA fragments (<150 bp). Eleven 4-mer end motifs were consistently altered in cfDNA fragments across all LSS cancers. Many significant signatures were consistent with previous observations in common cancers. Notably, SPOT-MAS achieved 96.2% specificity and 74.8% overall sensitivity, with a lower sensitivity of 60.7% in early-stage cancers.Conclusion: This proof-of-concept study demonstrates that SPOT-MAS a non-invasive test trained on five common cancer types, could detect a number of LSS cancer cases, potentially complementing existing screening programs.
Many cancers do not have standard tests, so they are often found too late, which leads to about 70% of cancer deaths. We've created a blood test that can help find cancer early. This test has already worked well for common cancers like breast and lung cancer, and now we're testing it on five harder-to-detect cancers: endometrial, esophageal, head and neck, ovarian and pancreatic cancers. In our study, we tested our blood test on 739 healthy people and 135 patients with these difficult cancers. Our method correctly identified healthy people 96.2% of the time and found cancer cases 74.8% of the time. This new test could help with screening for types of cancer that do not have good tests right now.
RESUMO
Pluchea indica (L.) Less. is a medicinal plant native to Asia. Traditionally, it is known for numerous traditional uses, such as treatments for fever, cough, and digestive issues. The present investigation aims to determine the chemical compositions of essential oils from its fresh leaves and stem barks. By using hydro-distillation and the GC-FID/MS (gas chromatography-flame ionization detection/mass spectrometry) analysis, the studied samples were dominated by sesquiterpene hydrocarbons (76.8-82.2 %) and their oxygenated derivatives (8.4-19.0 %). ß-Selinene (42.0-43.5 %) and silphinene (21.1-22.9 %) were the main compounds. Significantly, the stem bark essential oil strongly monitored the growth of four cancer cell lines K562, HeLa, HepG2, and MCF-7 with IC50 values of 2.89-7.34â µg/mL. Both studied samples showed strong anti-inflammatory activity against NO (nitric oxide) production with IC50 values of 21.81-23.18â µg/mL. The studied sample also exhibited antimicrobial activity at different levels. The molecular docking study revealed that ß-selinene exhibited the strongest binding affinity for all four cancer-related protein targets: epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), Abelson tyrosine-protein kinase 1 (ABL1), and phosphatidylinositol 3-kinase (PI3â K-α). The ADMET profiles of the major compounds were also predicted to provide insights for further research considerations.
RESUMO
Background: Stress is a major public health issue that can impact both physical and mental well-being. It is prevalent in many areas of modern life, including education. Healthcare students are at a high risk of experiencing stress due to the unique demands of their fields of study. Study design and methods: An online survey was conducted on 2,515 undergraduate students pursuing degrees in medicine, preventive medicine, pharmacy, and nursing at Can Tho University of Medicine and Pharmacy in Can Tho City, Vietnam. Results: Using the Perceived Stress Scale-10 (PSS-10), it was found that 35.2% of students reported mild stress, 62.7% had moderate stress, and only 2.1% experienced severe stress. Multivariable logistic regression analysis revealed nine significant factors associated with students' stress levels (p ≤ 0.05). Particularly, medicine students exhibited a significantly higher level of moderate and severe stress (95% CI = 1.22-2.01), 1.57 times higher than preventive medicine students. Sixth-year students had a stress level 1.58 times higher (95% CI = 1.11-2.26) than first-year students. Students achieving excellent and very good academic performances in the last semester had a stress level 1.60 times higher (95% CI = 1.16-2.22) than students with average and lower academic performance. Students living at home had a stress level 1.73 times higher (95% CI = 1.05-2.84) than students living in their relatives' houses. Students who rarely or never had a part-time job during academic years had a stress level 1.70 times higher (95% CI = 1.31-2.20) than those who often or sometimes had a part-time job. Students with a family history of smoking addiction had a stress level 1.69 times higher (95% CI = 1.28-2.22) than students without such a family history. Students who rarely or never received concern and sharing from family had a stress level 7.41 times higher (95% CI = 5.07-10.84) than students who often or sometimes received concern and sharing from family. Students who were often or sometimes cursed by family had a stress level 2.04 times higher (95% CI = 1.09-3.81) than students who were rarely or never cursed by family. Students without close friends had a stress level 1.46 times higher (95% CI = 1.11-1.91) than students with close friends. Conclusions: The rates of mild and moderate stress levels were significantly higher than severe stress level among healthcare students. Research has provided scientific findings as the basis for determining risk factors and imposing solutions that aim to reduce the rate of stress in students. Therefore, it helps students overcome difficulties and enhance their physical and mental health.
Assuntos
Testes Psicológicos , Autorrelato , Estudantes de Medicina , Humanos , Prevalência , Vietnã/epidemiologia , Atenção à Saúde , UniversidadesRESUMO
Biological and model membranes are frequently subjected to fluid shear stress. However, membrane mechanical responses to flow remain incompletely described. This is particularly true of membranes supported on a solid substrate, and the influences of membrane composition and substrate roughness on membrane flow responses remain poorly understood. Here, we combine microfluidics, fluorescence microscopy, and neutron reflectivity to explore how supported lipid bilayer patches respond to controlled shear stress. We demonstrate that lipid membranes undergo a significant, passive, and partially reversible increase in membrane area due to flow. We show that these fluctuations in membrane area can be constrained, but not prevented, by increasing substrate roughness. Similar flow-induced changes to membrane structure may contribute to the ability of living cells to sense and respond to flow.
Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Microscopia de Fluorescência , Fenômenos FísicosRESUMO
The development of new treatment agents in recent decades has significantly improved the survival of patients with multiple myeloma (MM). Nonetheless, MM remains an incurable disease; therefore, novel combination therapies are required. Natural killer (NK) cells are one of the safest immunotherapeutic options. In this study, we found that the anti-myeloma activity of expanded NK cells (eNKs) was improved by daratumumab, lenalidomide, and dexamethasone (DRd) in an MM xenograft mouse model. NK cells expanded from peripheral blood mononuclear cells collected from MM patients were highly cytotoxic against DRd pretreated tumor cells in vitro. To mimic the clinical protocol, a human MM xenograft model was developed using human RPMI8226-RFP-FLuc cells in NOD/SCID IL-2Rγnull (NSG) mice. MM bearing mice were randomly divided into six groups: no treatment, eNK, Rd, Rd + eNKs, DRd, and DRd + eNKs. DRd significantly enhanced the cytotoxicity of eNKs by upregulating NK cell activation ligands and effector function. DRd in combination with eNKs significantly reduced the serum M-protein level and prolonged mouse survival. In addition, DRd significantly increased the persistence of eNK and homing to MM sites. These results show that the anti-myeloma activity of ex vivo-expanded and activated NK cells is augmented by the immunomodulatory effect of DRd in MM-bearing mice, suggesting the therapeutic potential of this combination for MM patients.
Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Mieloma Múltiplo/terapia , Lenalidomida/farmacologia , Xenoenxertos , Leucócitos Mononucleares , Camundongos SCID , Camundongos Endogâmicos NOD , Células Matadoras Naturais , Dexametasona/farmacologiaRESUMO
Understanding the genetic basis for a phenotype is a central goal in biological research. Much has been learnt about bacterial genomes by creating large mutant libraries and looking for conditionally important genes. However, current genome-wide methods are largely unable to assay essential genes which are not amenable to disruption. To overcome this limitation, we developed a new version of "TraDIS" (transposon directed insertion-site sequencing) that we term "TraDIS-Xpress" that combines an inducible promoter into the transposon cassette. This allows controlled overexpression and repression of all genes owing to saturation of inserts adjacent to all open reading frames as well as conventional inactivation. We applied TraDIS-Xpress to identify responses to the biocide triclosan across a range of concentrations. Triclosan is endemic in modern life, but there is uncertainty about its mode of action with a concentration-dependent switch from bacteriostatic to bactericidal action unexplained. Our results show a concentration-dependent response to triclosan with different genes important in survival between static and cidal exposures. These genes include those previously reported to have a role in triclosan resistance as well as a new set of genes, including essential genes. Novel genes identified as being sensitive to triclosan exposure include those involved in barrier function, small molecule uptake, and integrity of transcription and translation. We anticipate the approach we show here, by allowing comparisons across multiple experimental conditions of TraDIS data, and including essential genes, will be a starting point for future work examining how different drug conditions impact bacterial survival mechanisms.
Assuntos
Elementos de DNA Transponíveis/genética , Genes Essenciais/genética , Genoma Bacteriano/efeitos dos fármacos , Triclosan/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Biblioteca Gênica , Genes Essenciais/efeitos dos fármacos , Mutagênese Insercional/efeitos dos fármacos , Proteínas Mutantes/efeitos dos fármacos , Proteínas Mutantes/genética , FenótipoRESUMO
BACKGROUND: ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1]. METHODS: Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function. Immuno-PET with ZED8 was assessed in huCD8+ tumor-bearing mice and in non-human primates. Plasma antibody levels were measured by ELISA to determine pharmacokinetic parameters, and OLINDA 1.0 was used to estimate radiation dosimetry from image-derived biodistribution data. RESULTS: ZED8 selectively binds to human CD8α at a binding site approximately 9 Å from that of MHCI making mutual interference unlikely. The equilibrium dissociation constant (KD) is 5 nM. ZED8 binds to cynomolgus CD8 with reduced affinity (66 nM) but it has no measurable affinity for rat or mouse CD8. In a series of lymphoma xenografts, ZED8 imaging was able to identify different CD8 levels concordant with flow cytometry. In cynomolgus monkeys with tool compound 89Zr-aCD8v17, lymph nodes were conspicuous by imaging 24 h post-injection, and the pharmacokinetics suggested a flat-fixed first-in-human dose of 4 mg per subject. The whole-body effective dose for an adult human was estimated to be 0.48 mSv/MBq, comparable to existing 89Zr immuno-PET reagents. CONCLUSION: 89Zr immuno-PET with ZED8 appears to be a promising biomarker of tissue CD8 levels suitable for clinical evaluation in cancer patients eligible for immunotherapy.
Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Adulto , Humanos , Camundongos , Ratos , Animais , Tomografia por Emissão de Pósitrons/métodos , Indicadores e Reagentes/uso terapêutico , Distribuição Tecidual , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Zircônio/química , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular TumoralRESUMO
BACKGROUND: Late detection of hepatocellular carcinoma (HCC) results in an overall 5-year survival rate of less than 16%. Liquid biopsy (LB) assays based on detecting circulating tumor DNA (ctDNA) might provide an opportunity to detect HCC early noninvasively. Increasing evidence indicates that ctDNA detection using mutation-based assays is significantly challenged by the abundance of white blood cell-derived mutations, non-tumor tissue-derived somatic mutations in plasma, and the mutational tumor heterogeneity. METHODS: Here, we employed concurrent analysis of cancer-related mutations, and their fragment length profiles to differentiate mutations from different sources. To distinguish persons with HCC (PwHCC) from healthy participants, we built a classification model using three fragmentomic features of ctDNA through deep sequencing of thirteen genes associated with HCC. RESULTS: Our model achieved an area under the curve (AUC) of 0.88, a sensitivity of 89%, and a specificity of 82% in the discovery cohort consisting of 55 PwHCC and 55 healthy participants. In an independent validation cohort of 54 PwHCC and 53 healthy participants, the established model achieved comparable classification performance with an AUC of 0.86 and yielded a sensitivity and specificity of 81%. CONCLUSIONS: Our study provides a rationale for subsequent clinical evaluation of our assay performance in a large-scale prospective study.
Assuntos
Carcinoma Hepatocelular , DNA Tumoral Circulante , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Estudos Prospectivos , Biomarcadores Tumorais/genética , MutaçãoRESUMO
Meibomian gland dysfunction is one of the most common ocular diseases, with therapeutic treatment being primarily palliative due to our incomplete understanding of meibomian gland (MG) pathophysiology. To progress in vitro studies of human MG, this study describes a comprehensive protocol, with detailed troubleshooting, for the successful isolation, cultivation and cryopreservation of primary MG cells using biopsy-size segments of human eyelid tissue that would otherwise be discarded during surgery. MG acini were isolated and used to establish and propagate lipid-producing primary human MG cells. The primary cell viability during culture procedure was maintained through the application of Rho-associated coiled-coil containing protein kinase inhibitor (Y-27632, 10 µM) and collagen I from rat tails. Transcriptomic analysis of differentiated primary human MG cells confirmed cell origin and revealed high-level expression of many lipogenesis-related genes such as stearoyl-CoA desaturase (SCD), ELOVL Fatty Acid Elongase 1 (ELOVL1) and fatty acid synthase (FASN). Primary tarsal plate fibroblasts were also successfully isolated, cultured and cryopreserved. Established primary human MG cells and tarsal plate fibroblasts presented in this study have potential for applications in 3D models and bioengineered tissue that facilitate research in understanding of MG biology and pathophysiology.
Assuntos
Colágeno Tipo I , Glândulas Tarsais , Humanos , Animais , Ratos , Diferenciação Celular , Sobrevivência Celular , Criopreservação , Inibidores de Proteínas QuinasesRESUMO
As of April 2023, the COVID-19 pandemic has resulted in 1.1 million deaths in the United States, with approximately 75% of deaths occurring among adults aged ≥65 years (1). Data on the durability of protection provided by monovalent mRNA COVID-19 vaccination against critical outcomes of COVID-19 are limited beyond the Omicron BA.1 lineage period (December 26, 2021-March 26, 2022). In this case-control analysis, the effectiveness of 2-4 monovalent mRNA COVID-19 vaccine doses was evaluated against COVID-19-associated invasive mechanical ventilation (IMV) and in-hospital death among immunocompetent adults aged ≥18 years during February 1, 2022-January 31, 2023. Vaccine effectiveness (VE) against IMV and in-hospital death was 62% among adults aged ≥18 years and 69% among those aged ≥65 years. When stratified by time since last dose, VE was 76% at 7-179 days, 54% at 180-364 days, and 56% at ≥365 days. Monovalent mRNA COVID-19 vaccination provided substantial, durable protection against IMV and in-hospital death among adults during the Omicron variant period. All adults should remain up to date with recommended COVID-19 vaccination to prevent critical COVID-19-associated outcomes.