Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 52(14): 4672-4724, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37338993

RESUMO

The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.


Assuntos
Nanopartículas , Neoplasias , Gravidez , Humanos , Feminino , Portadores de Fármacos/uso terapêutico , Distribuição Tecidual , Placenta/patologia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos
2.
Pharm Res ; 39(11): 2673-2698, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35794397

RESUMO

In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Eritrócitos , Nanopartículas/uso terapêutico , Preparações Farmacêuticas
3.
bioRxiv ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38798657

RESUMO

Three-dimensional (3D) optical microscopy, combined with advanced tissue clearing, permits in situ interrogation of the tumor microenvironment (TME) in large volumetric tumors for preclinical cancer research. Light sheet (also known as ultramicroscopy) and confocal fluorescence microscopy are often used to achieve macroscopic and microscopic 3D images of optically cleared tumor tissues, respectively. Although each technique offers distinct fields of view (FOVs) and spatial resolution, the combination of these two optical microscopy techniques to obtain correlative multiscale 3D images from the same tumor tissues has not yet been explored. To establish correlative multiscale 3D optical microscopy, we developed a method for optically marking defined regions of interest (ROIs) within a cleared mouse tumor by employing a UV light-activated visible dye and Z-axis position-selective UV irradiation in a light sheet microscope system. By integrating this method with subsequent tissue processing, including physical ROI marking, reversal of tissue clearing, tissue macrosectioning, and multiplex immunofluorescence, we established a workflow that enables the tracking and 3D imaging of ROIs within tumor tissues through sequential light sheet and confocal fluorescence microscopy. This approach allowed for quantitative 3D spatial analysis of the immune response in the TME of a mouse mammary tumor following cancer immunotherapy at multiple spatial scales. The workflow also facilitated the direct localization of a metastatic lesion within a whole mouse brain. These results demonstrate that our ROI tracking method and its associated workflow offer a novel approach for correlative multiscale 3D optical microscopy, with the potential to provide new insights into tumor heterogeneity, metastasis, and response to therapy at various spatial levels.

4.
Bioeng Transl Med ; 8(4): e10536, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476062

RESUMO

Digital therapeutics are emerging as a new form of therapeutic interventions. Unlike conventional therapeutics, digital therapeutics deliver interventions directly to patients using an evidence-based, clinically evaluated software to treat, manage, or prevent diseases. Digital therapeutics manifest in diverse forms such as web-based applications, mobile applications on smart devices, virtual reality, and video games. As its own product category for FDA approval, digital therapeutics can function as stand-alone treatments or in combination with conventional therapeutics to improve adherence and/or efficacy. Here, we review the clinical landscape of digital therapeutics. We summarize FDA-approved products and their clinical use, overview >300 ongoing clinical trials, and discuss challenges for their clinical translation and strategies to overcome the same.

5.
Acta Pharm Sin B ; 13(5): 1789-1827, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250173

RESUMO

Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa