Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
EMBO J ; 42(24): e114054, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933600

RESUMO

Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.


Assuntos
Cardiolipinas , Lipidômica , Cardiolipinas/metabolismo , Membranas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Nature ; 584(7820): 262-267, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32512578

RESUMO

Governments around the world are responding to the coronavirus disease 2019 (COVID-19) pandemic1, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with unprecedented policies designed to slow the growth rate of infections. Many policies, such as closing schools and restricting populations to their homes, impose large and visible costs on society; however, their benefits cannot be directly observed and are currently understood only through process-based simulations2-4. Here we compile data on 1,700 local, regional and national non-pharmaceutical interventions that were deployed in the ongoing pandemic across localities in China, South Korea, Italy, Iran, France and the United States. We then apply reduced-form econometric methods, commonly used to measure the effect of policies on economic growth5,6, to empirically evaluate the effect that these anti-contagion policies have had on the growth rate of infections. In the absence of policy actions, we estimate that early infections of COVID-19 exhibit exponential growth rates of approximately 38% per day. We find that anti-contagion policies have significantly and substantially slowed this growth. Some policies have different effects on different populations, but we obtain consistent evidence that the policy packages that were deployed to reduce the rate of transmission achieved large, beneficial and measurable health outcomes. We estimate that across these 6 countries, interventions prevented or delayed on the order of 61 million confirmed cases, corresponding to averting approximately 495 million total infections. These findings may help to inform decisions regarding whether or when these policies should be deployed, intensified or lifted, and they can support policy-making in the more than 180 other countries in which COVID-19 has been reported7.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Quarentena/métodos , Número Básico de Reprodução , COVID-19 , China/epidemiologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/transmissão , França/epidemiologia , Humanos , Irã (Geográfico)/epidemiologia , Itália/epidemiologia , Pneumonia Viral/mortalidade , Pneumonia Viral/transmissão , República da Coreia/epidemiologia , Instituições Acadêmicas/organização & administração , Isolamento Social , Estados Unidos/epidemiologia
4.
Mol Psychiatry ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355784

RESUMO

Comparisons and linkage between multiple imaging scales are essential for neural circuit connectomics. Here, we report 20 new recombinant rabies virus (RV) vectors that we have developed for multi-scale and multi-modal neural circuit mapping tools. Our new RV tools for mesoscale imaging express a range of improved fluorescent proteins. Further refinements target specific neuronal subcellular locations of interest. We demonstrate the discovery power of these new tools including the detection of detailed microstructural changes of rabies-labeled neurons in aging and Alzheimer's disease mouse models, live imaging of neuronal activities using calcium indicators, and automated measurement of infected neurons. RVs that encode GFP and ferritin as electron microscopy (EM) and fluorescence microscopy reporters are used for dual EM and mesoscale imaging. These new viral variants significantly expand the scale and power of rabies virus-mediated neural labeling and circuit mapping across multiple imaging scales in health and disease.

5.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35635291

RESUMO

NFAT5 is the only known mammalian tonicity-responsive transcription factor with an essential role in cellular adaptation to hypertonic stress. It is also implicated in diverse physiological and pathological processes. NFAT5 activity is tightly regulated by extracellular tonicity, but the underlying mechanisms remain elusive. Here, we demonstrate that NFAT5 enters the nucleus via the nuclear pore complex. We found that NFAT5 utilizes a unique nuclear localization signal (NFAT5-NLS) for nuclear import. siRNA screening revealed that only karyopherin ß1 (KPNB1), but not karyopherin α, is responsible for the nuclear import of NFAT5 via direct interaction with the NFAT5-NLS. Proteomics analysis and siRNA screening further revealed that nuclear export of NFAT5 under hypotonicity is driven by exportin-T (XPOT), where the process requires RuvB-like AAA-type ATPase 2 (RUVBL2) as an indispensable chaperone. Our findings have identified an unconventional tonicity-dependent nucleocytoplasmic trafficking pathway for NFAT5 that represents a critical step in orchestrating rapid cellular adaptation to change in extracellular tonicity. These findings offer an opportunity for the development of novel NFAT5 targeting strategies that are potentially useful for the treatment of diseases associated with NFAT5 dysregulation.


Assuntos
Núcleo Celular , Carioferinas , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , DNA Helicases , Humanos , Carioferinas/metabolismo , Mamíferos/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(52): 27043-27052, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843915

RESUMO

The light-sensitive outer segment of the vertebrate photoreceptor is a highly modified primary cilium filled with disc-shaped membranes that provide a vast surface for efficient photon capture. The formation of each disc is initiated by a ciliary membrane evagination driven by an unknown molecular mechanism reportedly requiring actin polymerization. Since a distinct F-actin network resides precisely at the site of disc morphogenesis, we employed a unique proteomic approach to identify components of this network potentially driving disc morphogenesis. The only identified actin nucleator was the Arp2/3 complex, which induces the polymerization of branched actin networks. To investigate the potential involvement of Arp2/3 in the formation of new discs, we generated a conditional knockout mouse lacking its essential ArpC3 subunit in rod photoreceptors. This knockout resulted in the complete loss of the F-actin network specifically at the site of disc morphogenesis, with the time course of ArpC3 depletion correlating with the time course of F-actin loss. Without the actin network at this site, the initiation of new disc formation is completely halted, forcing all newly synthesized membrane material to be delivered to the several nascent discs whose morphogenesis had already been in progress. As a result, these discs undergo uncontrolled expansion instead of normal enclosure, which leads to formation of unusual, large membrane whorls. These data suggest a model of photoreceptor disc morphogenesis in which Arp2/3 initiates disc formation in a "lamellipodium-like" mechanism.

7.
Proc Natl Acad Sci U S A ; 116(26): 13087-13096, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189593

RESUMO

Progressive rod-cone degeneration (PRCD) is a small protein residing in the light-sensitive disc membranes of the photoreceptor outer segment. Until now, the function of PRCD has remained enigmatic despite multiple demonstrations that its mutations cause blindness in humans and dogs. Here, we generated a PRCD knockout mouse and observed a striking defect in disc morphogenesis, whereby newly forming discs do not properly flatten. This leads to the budding of disc-derived vesicles, specifically at the site of disc morphogenesis, which accumulate in the interphotoreceptor matrix. The defect in nascent disc flattening only minimally alters the photoreceptor outer segment architecture beyond the site of new disc formation and does not affect the abundance of outer segment proteins and the photoreceptor's ability to generate responses to light. Interestingly, the retinal pigment epithelium, responsible for normal phagocytosis of shed outer segment material, lacks the capacity to clear the disc-derived vesicles. This deficiency is partially compensated by a unique pattern of microglial migration to the site of disc formation where they actively phagocytize vesicles. However, the microglial response is insufficient to prevent vesicular accumulation and photoreceptors of PRCD knockout mice undergo slow, progressive degeneration. Taken together, these data show that the function of PRCD is to keep evaginating membranes of new discs tightly apposed to each other, which is essential for the high fidelity of photoreceptor disc morphogenesis and photoreceptor survival.


Assuntos
Proteínas de Membrana/deficiência , Morfogênese/genética , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Animais , Membrana Celular/metabolismo , Membrana Celular/patologia , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestrutura , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/patologia , Distrofias de Cones e Bastonetes/veterinária , Modelos Animais de Doenças , Cães , Espaço Extracelular/metabolismo , Proteínas do Olho/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Retinose Pigmentar/genética , Retinose Pigmentar/patologia
8.
Nat Methods ; 15(9): 677-680, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30171236

RESUMO

As biomedical imaging datasets expand, deep neural networks are considered vital for image processing, yet community access is still limited by setting up complex computational environments and availability of high-performance computing resources. We address these bottlenecks with CDeep3M, a ready-to-use image segmentation solution employing a cloud-based deep convolutional neural network. We benchmark CDeep3M on large and complex two-dimensional and three-dimensional imaging datasets from light, X-ray, and electron microscopy.


Assuntos
Computação em Nuvem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos
9.
J Cell Sci ; 130(19): 3248-3260, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28808085

RESUMO

Each mitochondrial compartment contains varying protein compositions that underlie a diversity of localized functions. Insights into the localization of mitochondrial intermembrane space-bridging (MIB) components will have an impact on our understanding of mitochondrial architecture, dynamics and function. By using the novel visualizable genetic tags miniSOG and APEX2 in cultured mouse cardiac and human astrocyte cell lines and performing electron tomography, we have mapped at nanoscale resolution three key MIB components, Mic19, Mic60 and Sam50 (also known as CHCHD3, IMMT and SAMM50, respectively), in the environment of structural landmarks such as cristae and crista junctions (CJs). Tagged Mic19 and Mic60 were located at CJs, distributed in a network pattern along the mitochondrial periphery and also enriched inside cristae. We discovered an association of Mic19 with cytochrome c oxidase subunit IV. It was also found that tagged Sam50 is not uniformly distributed in the outer mitochondrial membrane and appears to incompletely overlap with Mic19- or Mic60-positive domains, most notably at the CJs.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Linhagem Celular Transformada , Humanos , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética
10.
J Struct Biol ; 198(2): 103-115, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28392451

RESUMO

Because of the significance of electron microscope tomography in the investigation of biological structure at nanometer scales, ongoing improvement efforts have been continuous over recent years. This is particularly true in the case of software developments. Nevertheless, verification of improvements delivered by new algorithms and software remains difficult. Current analysis tools do not provide adaptable and consistent methods for quality assessment. This is particularly true with images of biological samples, due to image complexity, variability, low contrast and noise. We report an electron tomography (ET) simulator with accurate ray optics modeling of image formation that includes curvilinear trajectories through the sample, warping of the sample and noise. As a demonstration of the utility of our approach, we have concentrated on providing verification of the class of reconstruction methods applicable to wide field images of stained plastic-embedded samples. Accordingly, we have also constructed digital phantoms derived from serial block face scanning electron microscope images. These phantoms are also easily modified to include alignment features to test alignment algorithms. The combination of more realistic phantoms with more faithful simulations facilitates objective comparison of acquisition parameters, alignment and reconstruction algorithms and their range of applicability. With proper phantoms, this approach can also be modified to include more complex optical models, including distance-dependent blurring and phase contrast functions, such as may occur in cryotomography.


Assuntos
Algoritmos , Tomografia com Microscopia Eletrônica/métodos , Imagens de Fantasmas/normas , Tomografia com Microscopia Eletrônica/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Software
11.
Proc Natl Acad Sci U S A ; 111(26): 9633-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979790

RESUMO

It is generally accepted that healthy cells degrade their own mitochondria. Here, we report that retinal ganglion cell axons of WT mice shed mitochondria at the optic nerve head (ONH), and that these mitochondria are internalized and degraded by adjacent astrocytes. EM demonstrates that mitochondria are shed through formation of large protrusions that originate from otherwise healthy axons. A virally introduced tandem fluorophore protein reporter of acidified mitochondria reveals that acidified axonal mitochondria originating from the retinal ganglion cell are associated with lysosomes within columns of astrocytes in the ONH. According to this reporter, a greater proportion of retinal ganglion cell mitochondria are degraded at the ONH than in the ganglion cell soma. Consistently, analyses of degrading DNA reveal extensive mtDNA degradation within the optic nerve astrocytes, some of which comes from retinal ganglion cell axons. Together, these results demonstrate that surprisingly large proportions of retinal ganglion cell axonal mitochondria are normally degraded by the astrocytes of the ONH. This transcellular degradation of mitochondria, or transmitophagy, likely occurs elsewhere in the CNS, because structurally similar accumulations of degrading mitochondria are also found along neurites in superficial layers of the cerebral cortex. Thus, the general assumption that neurons or other cells necessarily degrade their own mitochondria should be reconsidered.


Assuntos
Axônios/fisiologia , Mitofagia/fisiologia , Disco Óptico/citologia , Células Ganglionares da Retina/fisiologia , Animais , Astrócitos/metabolismo , Tomografia com Microscopia Eletrônica , Exocitose/fisiologia , Imageamento Tridimensional , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Marcação In Situ das Extremidades Cortadas , Proteínas Luminescentes , Lisossomos/metabolismo , Camundongos , Fagocitose/fisiologia , Células Ganglionares da Retina/citologia , Proteína Vermelha Fluorescente
12.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895398

RESUMO

We demonstrate limited-tilt, serial section electron tomography (ET), which can non-destructively map brain circuits over large 3D volumes and reveal high-resolution, supramolecular details within subvolumes of interest. We show accelerated ET imaging of thick sections (>500 nm) with the capacity to resolve key features of neuronal circuits including chemical synapses, endocytic structures, and gap junctions. Furthermore, we systematically assessed how imaging parameters affect image quality and speed to enable connectomic-scale projects.

13.
Sci Rep ; 13(1): 21462, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052818

RESUMO

The binding and interaction of proteins with nucleic acids such as DNA and RNA constitutes a fundamental biochemical and biophysical process in all living organisms. Identifying and visualizing such temporal interactions in cells is key to understanding their function. To image sites of these events in cells across scales, we developed a method, named PROMPT for PROximal Molecular Probe Transfer, which is applicable to both light and correlative electron microscopy. This method relies on the transfer of a bound photosensitizer from a protein known to associate with specific nucleic acid sequence, allowing the marking of the binding site on DNA or RNA in fixed cells. The method produces a fluorescent mark at the site of their interaction, that can be made electron dense and reimaged at high resolution in the electron microscope. As proof of principle, we labeled in situ the interaction sites between the histone H2B and nuclear DNA. As an example of application for specific RNA localizations we labeled different nuclear and nucleolar fractions of the protein Fibrillarin to mark and locate where it associates with RNAs, also using electron tomography. While the current PROMPT method is designed for microscopy, with minimal variations, it can be potentially expanded to analytical techniques.


Assuntos
Ácidos Nucleicos , RNA/metabolismo , Microscopia Eletrônica , DNA , Nucléolo Celular/metabolismo
14.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37808832

RESUMO

The binding and interaction of proteins with nucleic acids such as DNA and RNA constitutes a fundamental biochemical and biophysical process in all living organisms. Identifying and visualizing such temporal interactions in cells is key to understanding their function. To image sites of these events in cells across scales, we developed a method, named PROMPT for PROximal Molecular Probe Transfer, which is applicable to both light and correlative electron microscopy. This method relies on the transfer of a bound photosensitizer from a protein known to associate with specific nucleic acid sequence, allowing the marking of the binding site on DNA or RNA in fixed cells. The method produces a fluorescent mark at the site of their interaction, that can be made electron dense and reimaged at high resolution in the electron microscope. As proof of principle, we labeled in situ the interaction sites between the histone H2B and nuclear DNA. As an example of application for specific RNA localizations we labeled different nuclear and nucleolar fractions of the protein Fibrillarin to mark and locate where it associates with RNAs, also using electron tomography. While the current PROMPT method is designed for microscopy, with minimal variations, it can be potentially expanded to analytical techniques.

15.
Nat Commun ; 14(1): 4159, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443171

RESUMO

Ebola virus (EBOV) infection induces the formation of membrane-less, cytoplasmic compartments termed viral factories, in which multiple viral proteins gather and coordinate viral transcription, replication, and assembly. Key to viral factory function is the recruitment of EBOV polymerase, a multifunctional machine that mediates transcription and replication of the viral RNA genome. We show that intracellularly reconstituted EBOV viral factories are biomolecular condensates, with composition-dependent internal exchange dynamics that likely facilitates viral replication. Within the viral factory, we found the EBOV polymerase clusters into foci. The distance between these foci increases when viral replication is enabled. In addition to the typical droplet-like viral factories, we report the formation of network-like viral factories during EBOV infection. Unlike droplet-like viral factories, network-like factories are inactive for EBOV nucleocapsid assembly. This unique view of EBOV propagation suggests a form-to-function relationship that describes how physical properties and internal structures of biomolecular condensates influence viral biogenesis.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/genética , Compartimentos de Replicação Viral , Transcrição Gênica , Replicação Viral , Nucleotidiltransferases/genética
16.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37162852

RESUMO

Nuclear pore complexes (NPCs) regulate information transfer between the nucleus and cytoplasm. NPC defects are linked to several neurological diseases, but the processes governing NPC biogenesis and spatial organization are poorly understood. Here, we identify a temporal window of strongly upregulated NPC biogenesis during neuronal maturation. We demonstrate that the AAA+ protein torsinA, whose loss of function causes the neurodevelopmental movement disorder DYT-TOR1A (DYT1) dystonia, coordinates NPC spatial organization during this period without impacting total NPC density. Using a new mouse line in which endogenous Nup107 is Halo-Tagged, we find that torsinA is essential for correct localization of NPC formation. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized, nascent NPCs, and NPC assembly completion is delayed. Our work implies that NPC spatial organization and number are independently regulated and suggests that torsinA is critical for the normal localization and assembly kinetics of NPCs.

17.
Elife ; 122023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449984

RESUMO

The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or 'discs', located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called 'incisures'. The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.


Assuntos
Rodopsina , Segmento Externo da Célula Bastonete , Animais , Camundongos , Rodopsina/metabolismo , Periferinas/metabolismo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Visão Ocular
18.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066355

RESUMO

The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or "discs", located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called "incisures". The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.

19.
bioRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36993370

RESUMO

Cristae are high curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous mechanisms for lipids have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the IMM against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. The model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that CL is essential in low oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of CL is dependent on the surrounding lipid and protein components of the IMM.

20.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37662194

RESUMO

We introduce Fe-TAML, a small molecule-based peroxidase as a versatile new member of the correlated fluorescence and electron microscopy toolkit. The utility of the probe is demonstrated by high resolution imaging of newly synthesized DNA (through biorthogonal labeling), genetically tagged proteins (using HaloTag), and untagged endogenous proteins (via immunostaining). EM visualization in these applications is facilitated by exploiting Fe-TAML's catalytic activity for the deposition of localized osmiophilic precipitates based on polymerized 3,3'-diaminobenzidine. Optimized conditions for synthesizing and implementing Fe-TAML based probes are also described. Overall, Fe-TAML is a new chemical biology tool that can be used to visualize diverse biomolecular species along nanometer and micron scales within cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa