Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 259: 119853, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33971437

RESUMO

The determination of the abundances of the CHx, C = O and aromatic groups in chondritic Insoluble Organic Matter (IOM) and coals by Infrared (IR) spectroscopy is a challenging issue due to insufficient knowledge on the absorption cross-sections and their sensitivity to the molecular environment. Here, we report a calibration approach based on a 13C synthetic model material whose composition was unambiguously determined by Direct-Pulse/Magic Angle Spinning Nuclear Magnetic Resonance (DP/MAS NMR). Ratios of the cross-sections of the CHx, C = O and aromatic groups have been determined, and the method has been applied to IOM samples extracted from four chondrites as Orgueil (CI), Murchison (CM), Tagish Lake (C2-ungrouped) and EET 92042 (CR2), and to a series of coals. The estimate of the aliphatic to aromatic carbon ratio (nCHx/nAro) in IOM samples from Orgueil, Murchison and Tagish Lake chondrites is in good agreement with Single-Pulse/NMR estimates earlier published, and is lower by a factor of 1.3 in the case of the CR chondrite EET 92042 (but the error bars overlap). In contrast, the aliphatic to carbonyl ratio (nCHx/nC=O) is overestimated for the four chondrites. These discrepancies are likely due to the control of the absorption cross-section of the C = O and C = C bonds by the local molecular environment. Regarding coals, the use of published NMR analyses has brought to light that the integrated cross-section ratio ACHx/AAro varies with the vitrinite reflectance over an order of magnitude. Here as well, the local oxygen speciation plays a critical control in AAro, which decreases with increasing the vitrinite reflectance. We provide an analytical law that links ACHx/AAro and vitrinite reflectance, which will allow the determination of nCHx/nAro for any coal sample, provided its vitrinite reflectance is known.

2.
Chemosphere ; 242: 125174, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31675582

RESUMO

Salt marshes are natural deposits of heavy metals in estuarine systems, where sulphide precipitation associated with redox changes often results in a natural attenuation of contamination. In the present study, we focus on the effects of variable redox conditions imposed to a highly-polluted phosphogypsum stack that is directly piled over the salt marsh soil in the Tinto River estuary (Huelva, Spain). The behaviour of contaminants is evaluated in the phosphogypsum waste and in the marsh basement, separately, in controlled, experimentally-induced oscillating redox conditions. The results revealed that Fe, and to a lesser extent S, control most precipitation/dissolution processes. Ferric iron precipitates in the form of phosphates and oxyhydroxides, while metal sulphide precipitation is insignificant and appears to be prevented by the abundant formation of Fe phosphates. An antagonistic evolution with changing redox conditions was observed for the remaining contaminants such as Zn, As, Cd and U, which remained mobile in solution during most of experimental run. Therefore, these findings revealed that high concentrations of phosphates inhibit the typical processes of immobilisation of pollutants in salt-marshes which highlights the elevated contaminant potential of phosphogypsum wastes on coastal environments.


Assuntos
Sulfato de Cálcio/química , Estuários , Oxirredução , Fósforo/química , Monitoramento Ambiental/métodos , Ferro/química , Metais Pesados/análise , Fosfatos/química , Rios , Espanha , Poluentes Químicos da Água/análise , Áreas Alagadas
3.
Sci Total Environ ; 663: 718-730, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30731417

RESUMO

The impact of seasonal fluctuations linked to monsoon and irrigation generates redox oscillations in the subsurface, influencing the release of arsenic (As) in aquifers. Here, the biogeochemical control on As mobility was investigated in batch experiments using redox cycling bioreactors and As- and SO42--amended sediment. Redox potential (Eh) oscillations between anoxic (-300-0 mV) and oxic condition (0-500 mV) were implemented by automatically modulating an admixture of N2/CO2 or compressed air. A carbon source (cellobiose, a monomer of cellulose) was added at the beginning of each reducing cycle to stimulate the metabolism of the native microbial community. Results show that successive redox cycles can decrease arsenic mobility by up to 92% during reducing conditions. Anoxic conditions drive mainly the conversion of soluble As(V) to As(III) in contrast to oxic conditions. Phylogenetic analyses of 16S rRNA amplified from the sediments revealed the presence of sulfate and iron - reducing bacteria, confirming that sulfate and iron reduction are key factors for As immobilization from the aqueous phase. As and S K-edge X-ray absorption spectroscopy suggested the association of Fe-(oxyhydr)oxides and the importance of pyrite (FeS2(s)), rather than poorly ordered mackinawite (FeS(s)), for As sequestration under oxidizing and reducing conditions, respectively. Finally, these findings suggest a role for elemental sulfur in mediating aqueous thioarsenates formation in As-contaminated groundwater of the Mekong delta.


Assuntos
Arsênio/análise , Bactérias/metabolismo , Monitoramento Ambiental , Água Subterrânea/química , Sulfatos/metabolismo , Poluentes Químicos da Água/análise , Reatores Biológicos , Oxirredução , Vietnã , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa