Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Appl Environ Microbiol ; 87(16): e0076221, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34085859

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa can utilize unusual carbon sources, like sodium dodecyl sulfate (SDS) and alkanes. Whereas the initiating enzymatic steps of the corresponding degradation pathways have been characterized in detail, the oxidation of the emerging long-chain alcohols has received little attention. Recently, the genes for the Lao (long-chain-alcohol/aldehyde oxidation) system were discovered to be involved in the oxidation of long-chain alcohols derived from SDS and alkane degradation. In the Lao system, LaoA is predicted to be an alcohol dehydrogenase/oxidase; however, according to genetic studies, efficient long-chain-alcohol oxidation additionally required the Tat-dependent protein LaoB. In the present study, the Lao system was further characterized. In vivo analysis revealed that the Lao system complements the substrate spectrum of the well-described Exa system, which is required for growth with ethanol and other short-chain alcohols. Mutational analysis revealed that the Tat site of LaoB was required for long-chain-alcohol oxidation activity, strongly suggesting a periplasmic localization of the complex. Purified LaoA was fully active only when copurified with LaoB. Interestingly, in vitro activity of the purified LaoAB complex also depended on the presence of the Tat site. The copurified LaoAB complex contained a flavin cofactor and preferentially oxidized a range of saturated, unbranched primary alcohols. Furthermore, the LaoAB complex could reduce cytochrome c550-type redox carriers like ExaB, a subunit of the Exa alcohol dehydrogenase system. LaoAB complex activity was stimulated by rhamnolipids in vitro. In summary, LaoAB constitutes an unprecedented protein complex with specific properties apparently required for oxidizing long-chain alcohols. IMPORTANCE Pseudomonas aeruginosa is a major threat to public health. Its ability to thrive in clinical settings, water distribution systems, or even jet fuel tanks is linked to detoxification and degradation of diverse hydrophobic substrates that are metabolized via alcohol intermediates. Our study illustrates a novel flavoprotein long-chain-alcohol dehydrogenase consisting of a facultative two-subunit complex, which is unique among related enzymes, while the homologs of the corresponding genes are found in numerous bacterial genomes. Understanding the catalytic and compartmentalization processes involved is of great interest for biotechnological and hygiene research, as it may be a potential starting point for rationally designing novel antibacterial substances with high specificity against this opportunistic pathogen.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Álcoois/química , Álcoois/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Cinética , Oxirredução , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
2.
Appl Environ Microbiol ; 87(22): e0145321, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34469190

RESUMO

The reaction sequence for aerobic degradation of bile salts by environmental bacteria resembles degradation of other steroid compounds. Recent findings show that bacteria belonging to the Sphingomonadaceae use a pathway variant for bile-salt degradation. This study addresses this so-called Δ4,6-variant by comparative analysis of unknown degradation steps in Sphingobium sp. strain Chol11 with known reactions found in Pseudomonas stutzeri Chol1. Investigations of strain Chol11 revealed an essential function of the acyl-CoA dehydrogenase (ACAD) Scd4AB for growth with bile salts. Growth of the scd4AB deletion mutant was restored with a metabolite containing a double bond within the side chain which was produced by the Δ22-ACAD Scd1AB from P. stutzeri Chol1. Expression of scd1AB in the scd4AB deletion mutant fully restored growth with bile salts, while expression of scd4AB only enabled constricted growth in P. stutzeri Chol1 scd1A or scd1B deletion mutants. Strain Chol11 Δscd4A accumulated hydroxylated steroid metabolites which were degraded and activated with coenzyme A by the wild type. Activities of five Rieske type monooxygenases of strain Chol11 were screened by heterologous expression and compared to the B-ring cleaving KshABChol1 from P. stutzeri Chol1. Three of the Chol11 enzymes catalyzed B-ring cleavage of only Δ4,6-steroids, while KshABChol1 was more versatile. Expression of a fourth KshA homolog, Nov2c228, led to production of metabolites with hydroxylations at an unknown position. These results indicate functional diversity of proteobacterial enzymes for bile-salt degradation and suggest a novel side chain degradation pathway involving an essential ACAD reaction and a steroid hydroxylation step. IMPORTANCE This study highlights the biochemical diversity of bacterial degradation of steroid compounds in different aspects. First, it further elucidates an unexplored variant in the degradation of bile-salt side chains by sphingomonads, a group of environmental bacteria that is well-known for their broad metabolic capabilities. Moreover, it adds a so far unknown hydroxylation of steroids to the reactions Rieske monooxygenases can catalyze with steroids. Additionally, it analyzes a proteobacterial ketosteroid-9α-hydroxylase and shows that this enzyme is able to catalyze side reactions with nonnative substrates.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Ácidos e Sais Biliares/metabolismo , Oxigenases de Função Mista/metabolismo , Pseudomonas stutzeri , Sphingomonadaceae , Esteroides/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas stutzeri/enzimologia , Pseudomonas stutzeri/genética , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética
3.
Appl Environ Microbiol ; 87(19): e0098721, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260303

RESUMO

Bile salts are amphiphilic steroids with digestive functions in vertebrates. Upon excretion, bile salts are degraded by environmental bacteria. Degradation of the bile salt steroid skeleton resembles the well-studied pathway for other steroids, like testosterone, while specific differences occur during side chain degradation and the initiating transformations of the steroid skeleton. Of the latter, two variants via either Δ1,4- or Δ4,6-3-ketostructures of the steroid skeleton exist for 7-hydroxy bile salts. While the Δ1,4 variant is well known from many model organisms, the Δ4,6 variant involving a 7-hydroxysteroid dehydratase as a key enzyme has not been systematically studied. Here, combined proteomic, bioinformatic, and functional analyses of the Δ4,6 variant in Sphingobium sp. strain Chol11 were performed. They revealed a degradation of the steroid rings similar to that of the Δ1,4 variant except for the elimination of the 7-OH as a key difference. In contrast, differential production of the respective proteins revealed a putative gene cluster for the degradation of the C5 carboxylic side chain encoding a CoA ligase, an acyl-CoA dehydrogenase, a Rieske monooxygenase, and an amidase but lacking most canonical genes known from other steroid-degrading bacteria. Bioinformatic analyses predicted the Δ4,6 variant to be widespread among the Sphingomonadaceae, which was verified for three type strains which also have the predicted side chain degradation cluster. A second amidase in the side chain degradation gene cluster of strain Chol11 was shown to cleave conjugated bile salts while having low similarity to known bile salt hydrolases. This study identifies members of the Sphingomonadaceae that are remarkably well adapted to the utilization of bile salts via a partially distinct metabolic pathway. IMPORTANCE This study highlights the biochemical diversity of bacterial degradation of steroid compounds, in particular bile salts. Furthermore, it substantiates and advances knowledge of a variant pathway for degradation of steroids by sphingomonads, a group of environmental bacteria that are well known for their broad metabolic capabilities. Biodegradation of bile salts is a critical process due to the high input of these compounds from manure into agricultural soils and wastewater treatment plants. In addition, these results may also be relevant for the biotechnological production of bile salts or other steroid compounds with pharmaceutical functions.


Assuntos
Ácidos e Sais Biliares/metabolismo , Sphingomonadaceae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biologia Computacional , Redes e Vias Metabólicas , Proteoma , Sphingomonadaceae/genética
4.
Appl Microbiol Biotechnol ; 105(4): 1547-1561, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33521845

RESUMO

Chitin is an abundant waste product from shrimp and mushroom industries and as such, an appropriate secondary feedstock for biotechnological processes. However, chitin is a crystalline substrate embedded in complex biological matrices, and, therefore, difficult to utilize, requiring an equally complex chitinolytic machinery. Following a bottom-up approach, we here describe the step-wise development of a mutualistic, non-competitive consortium in which a lysine-auxotrophic Escherichia coli substrate converter cleaves the chitin monomer N-acetylglucosamine (GlcNAc) into glucosamine (GlcN) and acetate, but uses only acetate while leaving GlcN for growth of the lysine-secreting Corynebacterium glutamicum producer strain. We first engineered the substrate converter strain for growth on acetate but not GlcN, and the producer strain for growth on GlcN but not acetate. Growth of the two strains in co-culture in the presence of a mixture of GlcN and acetate was stabilized through lysine cross-feeding. Addition of recombinant chitinase to cleave chitin into GlcNAc2, chitin deacetylase to convert GlcNAc2 into GlcN2 and acetate, and glucosaminidase to cleave GlcN2 into GlcN supported growth of the two strains in co-culture in the presence of colloidal chitin as sole carbon source. Substrate converter strains secreting a chitinase or a ß-1,4-glucosaminidase degraded chitin to GlcNAc2 or GlcN2 to GlcN, respectively, but required glucose for growth. In contrast, by cleaving GlcNAc into GlcN and acetate, a chitin deacetylase-expressing substrate converter enabled growth of the producer strain in co-culture with GlcNAc as sole carbon source, providing proof-of-principle for a fully integrated co-culture for the biotechnological utilization of chitin. Key Points• A bacterial consortium was developed to use chitin as feedstock for the bioeconomy.• Substrate converter and producer strain use different chitin hydrolysis products.• Substrate converter and producer strain are mutually dependent on each other.


Assuntos
Quitinases , Corynebacterium glutamicum , Acetilglucosamina , Quitina , Quitinases/genética , Corynebacterium glutamicum/genética , Lisina
5.
Microbiology (Reading) ; 166(10): 918-935, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32762802

RESUMO

Alphaproteobacteria belonging to the group of the sphingomonads are frequently found in biofilms colonizing pure-water systems, where they cause technical and hygienic problems. In this study, physiological properties of sphingomonads for biofilm formation on plastic surfaces were analysed. Sphingomonas sp. strain S2M10 was isolated from a used water-filtration membrane and submitted to transposon mutagenesis for isolating mutants with altered biofilm formation. Mutants showing strongly decreased biofilm formation carried transposon insertions in genes for the biosynthesis of the polysaccharide sphingan and for flagellar motility. Flagella-mediated attachment was apparently important for biofilm formation on plastic materials of intermediate hydrophobicity, while a mutant with defect in spnB, encoding the first enzyme in sphingan biosynthesis, showed no biofilm formation on all tested materials. Sphingan-dependent biofilm formation was induced in the presence of specific carbon sources while it was not induced in complex medium with yeast extract and tryptone. The regulation of sphingan-based biofilm formation was investigated by interfering with the CckA/ChpT/CtrA phosphorelay, a central signal-transduction pathway in most Alphaproteobacteria. Construction and ectopic expression of a kinase-deficient histidine kinase CckA caused cell elongation and massive sphingan-dependent cell aggregation. In addition, it caused increased activity of the promotor of spnB. In conclusion, these results indicate that sphingan-based biofilm formation by sphingomonads might be triggered by specific carbon sources under prototrophic conditions resembling a milieu that often prevails in pure-water systems.


Assuntos
Biofilmes/crescimento & desenvolvimento , Plásticos/metabolismo , Polissacarídeos Bacterianos/biossíntese , Sphingomonas/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/análise , Carbono/metabolismo , Elementos de DNA Transponíveis/genética , Flagelos/genética , Flagelos/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Mutação , Plásticos/química , Polissacarídeos Bacterianos/genética , Transdução de Sinais , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Sphingomonas/metabolismo , Transcrição Gênica , Microbiologia da Água
6.
Curr Microbiol ; 77(11): 3385-3396, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32915288

RESUMO

The obligately anaerobic, denitrifying bacterium Azoarcus anaerobius strain LuFRes1 grows with resorcinol (1,3-dihydroxybenzene) as sole carbon and energy source. Resorcinol is oxidized to hydroxyhydroquinone (1,2,4-trihydroxybenzene) by resorcinol hydroxylase (RH), an inducible membrane-bound enzyme. Sequence comparison places resorcinol hydroxylase into the group of anaerobic molybdopterin oxidoreductases and dimethyl sulfoxide reductase-like enzymes. In the large subunit, a molybdopterin-binding domain was predicted, and the small subunit most likely contains two [4Fe-4S] centers. Growth of molybdate-starved cells was inhibited by tungstate, and in vitro resorcinol hydroxylase activity was inhibited by arsenite and selenite that are known to inhibit molybdenum-containing enzymes. The two genes encoding resorcinol hydroxylase could be expressed in Escherichia coli but the products remained in inclusion bodies. All attempts to purify RH from A. anaerobius or to produce soluble, active RH in E. coli failed. Nevertheless, RH was produced as a C-terminally Strep-tagged protein from plasmid pSKM1 in Thauera aromatica AR1 transconjugants carrying a transposon insertion in the coding gene for the large (ΔrhL) or the small subunit (ΔrhS) of RH from cosmid R+. RH in the membrane fraction of wild-type transconjugant T. aromatica AR1/R+ showed a specific activity of 80 mU mg-1, and the specific activity of RH in the membranes of the complemented mutants was in the same range (80-95 mU mg-1). We conclude that RH of A. anaerobius is a membrane-bound molybdoenzyme consisting of two subunits which might require a further loosely bound subunit as membrane anchor.


Assuntos
Escherichia coli , Molibdênio , Azoarcus/genética , Escherichia coli/genética , Oxigenases de Função Mista
7.
Environ Microbiol ; 21(2): 800-813, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30680854

RESUMO

Bile salts are steroid compounds from the digestive tract of vertebrates and enter the environment via defecation. Many aerobic bile-salt degrading bacteria are known but no bacteria that completely degrade bile salts under anoxic conditions have been isolated so far. In this study, the facultatively anaerobic Betaproteobacterium Azoarcus sp. strain Aa7 was isolated that grew with bile salts as sole carbon source under anoxic conditions with nitrate as electron acceptor. Phenotypic and genomic characterization revealed that strain Aa7 used the 2,3-seco pathway for the degradation of bile salts as found in other denitrifying steroid-degrading bacteria such as Sterolibacterium denitrificans. Under oxic conditions strain Aa7 used the 9,10-seco pathway as found in, for example, Pseudomonas stutzeri Chol1. Metabolite analysis during anaerobic growth indicated a reductive dehydroxylation of 7α-hydroxyl bile salts. Deletion of the gene hsh2 Aa7 encoding a 7-hydroxysteroid dehydratase led to strongly impaired growth with cholate and chenodeoxycholate but not with deoxycholate lacking a hydroxyl group at C7. The hsh2 Aa7 deletion mutant degraded cholate and chenodeoxycholate to the corresponding C19 -androstadienediones only while no phenotype change was observed during aerobic degradation of cholate. These results showed that removal of the 7α-hydroxyl group was essential for cleavage of the steroid skeleton under anoxic conditions.


Assuntos
Azoarcus/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Anaerobiose , Azoarcus/enzimologia , Azoarcus/genética , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/química , Colatos/metabolismo , Desnitrificação , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroides/metabolismo , Rhodocyclaceae/enzimologia , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo , Esteroides/química , Esteroides/metabolismo
8.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31540990

RESUMO

Bacteria using toxic chemicals, such as detergents, as growth substrates face the challenge of exposing themselves to cell-damaging effects that require protection mechanisms, which demand energy delivered from catabolism of the toxic compound. Thus, adaptations are necessary for ensuring the rapid onset of substrate degradation and the integrity of the cells. Pseudomonas aeruginosa strain PAO1 can use the toxic detergent sodium dodecyl sulfate (SDS) as a growth substrate and employs, among others, cell aggregation as a protection mechanism. The degradation itself is also a protection mechanism and has to be rapidly induced upon contact to SDS. In this study, gene regulation of the enzymes initiating SDS degradation in strain PAO1 was studied. The gene and an atypical DNA-binding site of the LysR-type regulator SdsB1 were identified and shown to activate expression of the alkylsulfatase SdsA1 initiating SDS degradation. Further degradation of the resulting 1-dodecanol is catalyzed by enzymes encoded by laoCBA, which were shown to form an operon. Expression of this operon is regulated by the TetR-type repressor LaoR. Studies with purified LaoR identified its DNA-binding site and 1-dodecanoyl coenzyme A as the ligand causing detachment of LaoR from the DNA. Transcriptional studies revealed that the sulfate ester detergent sodium lauryl ether sulfate (SLES) induced expression of sdsA1 and the lao operon. Growth experiments revealed an essential involvement of the alkylsulfatase SdsA1 for SLES degradation. This study revealed that the genes for the enzymes initiating the degradation of toxic sulfate-ester detergents are induced stepwise by a positive and a negative regulator in P. aeruginosa strain PAO1.IMPORTANCE Bacterial degradation of toxic compounds is important not only for bioremediation but also for the colonization of hostile anthropogenic environments in which biocides are being used. This study with Pseudomonas aeruginosa expands our knowledge of gene regulation of the enzymes initiating degradation of sulfate ester detergents, which occurs in many hygiene and household products and, consequently, also in wastewater. As an opportunistic pathogen, P. aeruginosa causes severe hygienic problems because of its pronounced biocide resistance and its metabolic versatility, often combined with its pronounced biofilm formation. Knowledge about the regulation of detergent degradation, especially regarding the ligands of DNA-binding regulators, may lead to the rational development of specific inhibitors for restricting growth and biofilm formation of P. aeruginosa in hygienic settings. In addition, it may also contribute to optimizing bioremediation strategies not only for detergents but also for alkanes, which when degraded merge with sulfate ester degradation at the level of long-chain alcohols.


Assuntos
Ésteres/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Dodecilsulfato de Sódio/metabolismo , Sulfatos/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Sulfatases/metabolismo
9.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678916

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa strain PAO1 is able to use a variety of organic pollutants as growth substrates, including the anionic detergent sodium dodecyl sulfate (SDS) and long-chain alkanes. While the enzymes initiating SDS and alkane degradation are well known, the subsequent enzymatic steps for degradation of the derived primary long-chain alcohols have not yet been identified. By evaluating genes specifically induced during growth with SDS, a gene cluster encoding a putative alcohol dehydrogenase (PA0364/LaoA), a probable inner membrane protein (PA0365/LaoB), and a presumable aldehyde dehydrogenase (PA0366/LaoC) was identified and designated the Lao (long-chain-alcohol/aldehyde-oxidation) system. Growth experiments with deletion mutants with SDS, 1-dodecanol, and alkanes revealed that LaoA and LaoB are involved in the degradation of primary long-chain alcohols. Moreover, detection of 1-dodecanol oxidation in cell extracts by activity staining revealed an interdependency of LaoA and LaoB for efficient 1-dodecanol oxidation. An in silico analysis yielded no well-characterized homologue proteins for LaoA and LaoB. Furthermore, a gene adjacent to the lao gene cluster encodes a putative transcriptional regulator (PA0367/LaoR). A laoR deletion mutant exhibited constitutive expression of LaoA and LaoB, indicating that LaoR is a repressor for the expression of laoABC Taken together, these results showed that the proteins LaoA and LaoB constitute a novel oxidation system for long-chain alcohols derived from pollutants.IMPORTANCE The versatile and highly adaptive bacterium Pseudomonas aeruginosa is able to colonize a variety of habitats, including anthropogenic environments, where it is often challenged with toxic compounds. Its ability to degrade such compounds and to use them as growth substrates can significantly enhance spreading of this opportunistic pathogen in hygienic settings, such as clinics or water distribution systems. Thus, knowledge about the metabolism of P. aeruginosa can contribute to novel approaches for preventing its growth and reducing nosocomial infections. As the Lao system is important for the degradation of two different classes of pollutants, the identification of these novel enzymes can be a useful contribution for developing effective antibacterial strategies.


Assuntos
Álcoois/metabolismo , Alcanos/metabolismo , Proteínas de Bactérias/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Dodecilsulfato de Sódio/metabolismo , Aldeídos/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Deleção de Genes , Oxirredução
10.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054875

RESUMO

Bile salts such as cholate are steroid compounds with a C5 carboxylic side chain and occur ubiquitously in vertebrates. Upon their excretion into soils and waters, bile salts can serve as growth substrates for diverse bacteria. Novosphingobium sp. strain Chol11 degrades 7-hydroxy bile salts via 3-keto-7-deoxy-Δ4,6 metabolites by the dehydration of the 7-hydroxyl group catalyzed by the 7α-hydroxysteroid dehydratase Hsh2. This reaction has not been observed in the well-studied 9-10-seco degradation pathway used by other steroid-degrading bacteria indicating that strain Chol11 uses an alternative pathway. A reciprocal BLASTp analysis showed that known side chain degradation genes from other cholate-degrading bacteria (Pseudomonas stutzeri Chol1, Comamonas testosteroni CNB-2, and Rhodococcus jostii RHA1) were not found in the genome of strain Chol11. The characterization of a transposon mutant of strain Chol11 showing altered growth with cholate identified a novel steroid-24-oyl-coenzyme A ligase named SclA. The unmarked deletion of sclA resulted in a strong growth rate decrease with cholate, while growth with steroids with C3 side chains or without side chains was not affected. Intermediates with a 7-deoxy-3-keto-Δ4,6 structure, such as 3,12-dioxo-4,6-choldienoic acid (DOCDA), were shown to be likely physiological substrates of SclA. Furthermore, a novel coenzyme A (CoA)-dependent DOCDA degradation metabolite with an additional double bond in the side chain was identified. These results support the hypothesis that Novosphingobium sp. strain Chol11 harbors an alternative pathway for cholate degradation, in which side chain degradation is initiated by the CoA ligase SclA and proceeds via reaction steps catalyzed by so-far-unknown enzymes different from those of other steroid-degrading bacteria.IMPORTANCE This study provides further evidence of the diversity of metabolic pathways for the degradation of steroid compounds in environmental bacteria. The knowledge about these pathways contributes to the understanding of the CO2-releasing part of the global C cycle. Furthermore, it is useful for investigating the fate of pharmaceutical steroids in the environment, some of which may act as endocrine disruptors.


Assuntos
Proteínas de Bactérias/genética , Colatos/metabolismo , Coenzima A Ligases/genética , Sphingomonadaceae/genética , Proteínas de Bactérias/metabolismo , Coenzima A Ligases/metabolismo , Redes e Vias Metabólicas , Sphingomonadaceae/metabolismo , Esteroides/química
11.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29374035

RESUMO

The denitrifying betaproteobacterium Sterolibacterium denitrificans Chol1S catabolizes steroids such as cholesterol via an oxygen-independent pathway. It involves enzyme reaction sequences described for aerobic cholesterol and bile acid degradation as well as enzymes uniquely found in anaerobic steroid-degrading bacteria. Recent studies provided evidence that in S. denitrificans, the cholest-4-en-3-one intermediate is oxygen-independently oxidized to Δ4-dafachronic acid (C26-oic acid), which is subsequently activated by a substrate-specific acyl-coenzyme A (acyl-CoA) synthetase (ACS). Further degradation was suggested to proceed via unconventional ß-oxidation, where aldolases, aldehyde dehydrogenases, and additional ACSs substitute for classical ß-hydroxyacyl-CoA dehydrogenases and thiolases. Here, we heterologously expressed three cholesterol-induced genes that putatively code for AMP-forming ACSs and characterized two of the products as specific 3ß-hydroxy-Δ5-cholenoyl-CoA (C24-oic acid)- and pregn-4-en-3-one-22-oyl-CoA (C22-oic acid)-forming ACSs, respectively. A third heterologously produced ATP-dependent ACS was inactive with C26-, C24-, or C22-oic-acids but activated 3aα-H-4α-(3'propanoate)-7aß-methylhexahydro-1,5-indanedione (HIP) to HIP-CoA, a rather late intermediate of aerobic cholesterol degradation that still contains the CD rings of the sterane skeleton. This work provides experimental evidence that anaerobic steroid degradation proceeds via numerous alternate CoA-ester-dependent or -independent enzymatic reaction sequences as a result of aldolytic side chain and hydrolytic sterane ring C-C bond cleavages. The aldolytic side chain degradation pathway comprising highly exergonic ACSs and aldehyde dehydrogenases is considered to be essential for driving the unfavorable oxygen-independent C26 hydroxylation forward.IMPORTANCE The biological degradation of ubiquitously abundant steroids is hampered by their low solubility and the presence of two quaternary carbon atoms. The degradation of cholesterol by aerobic Actinobacteria has been studied in detail for more than 30 years and involves a number of oxygenase-dependent reactions. In contrast, much less is known about the oxygen-independent degradation of steroids in denitrifying bacteria. In the cholesterol-degrading anaerobic model organism Sterolibacterium denitrificans Chol1S, initial evidence has been obtained that steroid degradation proceeds via numerous alternate coenzyme A (CoA)-ester-dependent/independent reaction sequences. Here, we describe the heterologous expression of three highly specific and characteristic acyl-CoA synthetases, two of which play key roles in the degradation of the side chain, whereas a third one is specifically involved in the B ring degradation. The results obtained shed light into oxygen-independent steroid degradation comprising more than 40 enzymatic reactions.


Assuntos
Proteínas de Bactérias/genética , Colesterol/metabolismo , Coenzima A Ligases/genética , Rhodocyclaceae/fisiologia , Anaerobiose , Proteínas de Bactérias/metabolismo , Coenzima A Ligases/metabolismo , Rhodocyclaceae/genética
12.
Environ Microbiol ; 18(10): 3550-3564, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27322205

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa controls the production of virulence factors by quorum sensing (QS). Besides cell density, QS in P. aeruginosa is co-regulated by metabolic influences, especially nutrient limitation. Previously, a co-culture model system was established consisting of P. aeruginosa and the chitinolytic bacterium Aeromonas hydrophila, in which parasitic growth of P. aeruginosa is strictly dependent on the QS-controlled production of pyocyanin in response to nutrient limitation (Jagmann et al., ). In this study, the co-culture was employed to identify novel genes involved in the regulation of pyocyanin production. Via transposon mutagenesis, the gene gbuA encoding a guanidinobutyrase was identified, deletion of which led to a loss of pyocyanin production in co-cultures and to a reduced pyocyanin production in single cultures. Addition of the natural substrate of GbuA to the mutant strain enhanced the negative effect on pyocyanin production in single cultures. The gbuA mutant showed a reduced transcription of the pqsABCDE operon and could be complemented by PqsE overexpression and addition of alkylquinolone signal molecules. The strong effect of gbuA deletion on the QS-controlled pyocyanin production in co-cultures showed the value of this approach for the discovery of novel gene functions linking metabolism and QS in P. aeruginosa.


Assuntos
Aeromonas hydrophila/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piocianina/metabolismo , Quinolonas/metabolismo , Ureo-Hidrolases/metabolismo , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Proteínas de Bactérias/genética , Técnicas de Cocultura , Regulação Bacteriana da Expressão Gênica , Óperon , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Ureo-Hidrolases/genética
13.
Environ Microbiol ; 18(12): 5187-5203, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27648822

RESUMO

Bile salts such as cholate are surface-active steroid compounds with functions for digestion and signaling in vertebrates. Upon excretion into soil and water bile salts are an electron- and carbon-rich growth substrate for environmental bacteria. Degradation of bile salts proceeds via intermediates with a 3-keto-Δ1,4 -diene structure of the steroid skeleton as shown for e.g. Pseudomonas spp. Recently, we isolated bacteria degrading cholate via intermediates with a 3-keto-7-deoxy-Δ4,6 -structure of the steroid skeleton suggesting the existence of a second pathway for cholate degradation. This potential new pathway was investigated with Novosphingobium sp. strain Chol11. A 7α-hydroxysteroid dehydratase encoded by hsh2 was identified, which was required for the formation of 3-keto-7-deoxy-Δ4,6 -metabolites. A hsh2 deletion mutant could still grow with cholate but showed impaired growth. Cholate degradation of this mutant proceeded via 3-keto-Δ1,4 -diene metabolites. Heterologous expression of Hsh2 in the bile salt-degrading Pseudomonas sp. strain Chol1 led to the formation of a dead-end steroid with a 3-keto-7-deoxy-Δ4,6 -diene structure. Hsh2 is the first steroid dehydratase with an important function in a metabolic pathway of bacteria that use bile salts as growth substrates. This pathway contributes to a broad metabolic repertoire of Novosphingobium strain Chol11 that may be advantageous in competition with other bile salt-degrading bacteria.


Assuntos
Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Colatos/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Alphaproteobacteria/enzimologia , Alphaproteobacteria/genética , Animais , Bactérias/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroides/metabolismo , Redes e Vias Metabólicas , Pseudomonas/genética , Pseudomonas/metabolismo
14.
Environ Microbiol ; 18(10): 3373-3389, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26691005

RESUMO

The bile salts cholate, deoxycholate, chenodeoxycholate and lithocholate are released from vertebrates into soil and water where environmental bacteria degrade these widespread steroid compounds. It was investigated whether different enzymes are required for the degradation of these tri-, di- and monohydroxylated bile salts in the model organism Pseudomonas sp. strain Chol1. Experiments with available and novel mutants showed that the degradation of the C5 -carboxylic side chain attached to the steroid skeleton is catalysed by the same set of enzymes. A difference was found for the degradation of partially degraded bile salts consisting of H-methylhexahydroindanone-propanoates (HIPs). With deoxycholate and lithocholate, which lack a hydroxy group at C7 of the steroid skeleton, an additional acyl-coenzyme A (CoA) dehydrogenase was required for ß-oxidation of the C3 -carboxylic side chain attached to the methylhexahydroindanone moiety. The ß-oxidation of this side chain could be measured in vitro. With cholate and deoxycholate, a reductive dehydroxylation of the C12-hydroxy group of HIP was required. Deletion of candidate genes for this reaction step revealed that a so-far unknown steroid dehydratase and a steroid oxidoreductase were responsible for this CoA-dependent reaction. These results showed that all bile salts are channelled into a common pathway via bypass reactions with 3'-hydroxy-HIP-CoA as central intermediate.


Assuntos
Ácidos e Sais Biliares/metabolismo , Pseudomonas/metabolismo , Esteroides/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/química , Catálise , Colatos/metabolismo , Hidroliases/genética , Hidroliases/metabolismo , Pseudomonas/genética , Esteroides/química
15.
Appl Environ Microbiol ; 82(24): 7113-7122, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27694241

RESUMO

Methylamines occur ubiquitously in the oceans and can serve as carbon, nitrogen, and energy sources for heterotrophic bacteria from different phylogenetic groups within the marine bacterioplankton. Diatoms, which constitute a large part of the marine phytoplankton, are believed to be incapable of using methylamines as a nitrogen source. As diatoms are typically associated with heterotrophic bacteria, the hypothesis came up that methylotrophic bacteria may provide ammonium to diatoms by degradation of methylamines. This hypothesis was investigated with the diatom Phaeodactylum tricornutum and monomethylamine (MMA) as the substrate. Bacteria supporting photoautotrophic growth of P. tricornutum with MMA as the sole nitrogen source could readily be isolated from seawater. Two strains, Donghicola sp. strain KarMa, which harbored genes for both monomethylamine dehydrogenase and the N methylglutamate pathway, and Methylophaga sp. strain M1, which catalyzed MMA oxidation by MMA dehydrogenase, were selected for further characterization. While strain M1 grew with MMA as the sole substrate, strain KarMa could utilize MMA as a nitrogen source only when, e.g., glucose was provided as a carbon source. With both strains, release of ammonium was detected during MMA utilization. In coculture with P. tricornutum, strain KarMa supported photoautotrophic growth with 2 mM MMA to the same extent as with the equimolar amount of NH4Cl. In coculture with strain M1, photoautotrophic growth of P. tricornutum was also supported, but to a much lower degree than by strain KarMa. This proof-of-principle study with a synthetic microbial community suggests that interkingdom cross-feeding of ammonium from methylamine-degrading bacteria is a contribution to phytoplankton growth which has been overlooked so far. IMPORTANCE: Interactions between diatoms and heterotrophic bacteria are important for marine carbon cycling. In this study, a novel interaction is described. Bacteria able to degrade monomethylamine, which is a ubiquitous organic nitrogen compound in marine environments, can provide ammonium to diatoms. This interkingdom metabolite transfer enables growth under photoautotrophic conditions in coculture, which would not be possible in the respective monocultures. This proof-of-principle study calls attention to a so far overlooked contribution to phytoplankton growth.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Diatomáceas/metabolismo , Metilaminas/metabolismo , Água do Mar/microbiologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Processos Heterotróficos , Filogenia , Fitoplâncton/metabolismo
16.
Environ Microbiol ; 17(1): 47-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24428272

RESUMO

Pseudomonas putida DOC21, a soil-dwelling proteobacterium, catabolizes a variety of steroids and bile acids. Transposon mutagenesis and bioinformatics analyses identified four clusters of steroid degradation (std) genes encoding a single catabolic pathway. The latter includes three predicted acyl-CoA synthetases encoded by stdA1, stdA2 and stdA3 respectively. The ΔstdA1 and ΔstdA2 deletion mutants were unable to assimilate cholate or other bile acids but grew well on testosterone or 4-androstene-3,17-dione (AD). In contrast, a ΔstdA3 mutant grew poorly in media containing either testosterone or AD. When cells were grown with succinate in the presence of cholate, ΔstdA1 accumulated Δ(1/4) -3-ketocholate and Δ(1,4) -3-ketocholate, whereas ΔstdA2 only accumulated 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC). When incubated with testosterone or bile acids, ΔstdA3 accumulated 3aα-H-4α(3'propanoate)-7aß-methylhexahydro-1,5-indanedione (HIP) or the corresponding hydroxylated derivative. Biochemical analyses revealed that StdA1 converted cholate, 3-ketocholate, Δ(1/4) -3-ketocholate, and Δ(1,4) -3-ketocholate to their CoA thioesters, while StdA2 transformed DHOPDC to DHOPDC-CoA. In contrast, purified StdA3 catalysed the CoA thioesterification of HIP and its hydroxylated derivatives. Overall, StdA1, StdA2 and StdA3 are acyl-CoA synthetases required for the complete degradation of bile acids: StdA1 and StdA2 are involved in degrading the C-17 acyl chain, whereas StdA3 initiates degradation of the last two steroid rings. The study highlights differences in steroid catabolism between Proteobacteria and Actinobacteria.


Assuntos
Ácidos e Sais Biliares/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Pseudomonas putida/enzimologia , Colatos/metabolismo , Mutação , Pseudomonas putida/genética , Testosterona/metabolismo
17.
Appl Environ Microbiol ; 81(20): 7201-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253674

RESUMO

Thauera aromatica strain AR-1 degrades 3,5-dihydroxybenzoate (3,5-DHB) with nitrate as an electron acceptor. Previous biochemical studies have shown that this strain converts 3,5-DHB to hydroxyhydroquinone (1,2,4-trihydroxybenzene) through water-dependent hydroxylation of the aromatic ring and subsequent decarboxylation, and they suggest a pathway homologous to that described for the anaerobic degradation of 1,3-dihydroxybenzene (resorcinol) by Azoarcus anaerobius. Southern hybridization of a T. aromatica strain AR-1 gene library identified a 25-kb chromosome region based on its homology with A. anaerobius main pathway genes. Sequence analysis defined 20 open reading frames. Knockout mutations of the most relevant genes in the pathway were generated by reverse genetics. Physiological and biochemical analyses identified the genes for the three main steps in the pathway which were homologous to those described in A. anaerobius and suggested the function of several auxiliary genes possibly involved in enzyme maturation and intermediate stabilization. However, T. aromatica strain AR-1 had an additional enzyme to metabolize hydroxyhydroquinone, a putative cytoplasmic quinone oxidoreductase. In addition, a specific tripartite ATP-independent periplasmic (TRAP) transport system was required for efficient growth on 3,5-DHB. Reverse transcription-PCR (RT-PCR) analysis showed that the pathway genes were organized in five 3,5-DHB-inducible operons, three of which have been shown to be under the control of a single LysR-type transcriptional regulator, DbdR. Despite sequence homology, the genetic organizations of the clusters in T. aromatica strain AR-1 and A. anaerobius differed substantially.


Assuntos
Hidroxibenzoatos/metabolismo , Thauera/metabolismo , Anaerobiose/genética , Regulação Bacteriana da Expressão Gênica , Família Multigênica/genética , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Thauera/genética
18.
J Phycol ; 51(2): 343-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26986529

RESUMO

Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation.

19.
Appl Microbiol Biotechnol ; 99(19): 8285-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26066844

RESUMO

Bacterial cells within biofilms and cell aggregates show increased resistance against chemical stress compared with suspended cells. It is not known whether bacteria that co-habit biofilms formed by other bacteria also acquire such resistance. This scenario was investigated in a proof-of-principle experiment with Pseudomonas aeruginosa strain PAO1 as cell aggregate-forming bacterium and Escherichia coli strain MG1655 as potential co-habiting bacterium equipped with an inducible bioluminescence system. Cell aggregation of strain PAO1 can be induced by the toxic detergent sodium dodecyl sulfate (SDS). In single cultures of strain MG1655, bioluminescence was inhibited by the protonophor carbonylcyanide-m-chlorophenylhydrazone (CCCP) but the cells were still viable. By applying CCCP and SDS together, cells of strain MG1655 lost their bioluminescence and viability indicating the importance of energy-dependent resistance mechanisms against SDS. In co-suspensions with strain PAO1, bioluminescence of strain MG1655 was sustained in the presence of SDS and CCCP. Image analysis showed that bioluminescent cells were located in cell aggregates formed by strain PAO1. Thus, cells of strain MG1655 that co-habited cell aggregates formed by strain PAO1 were protected against a severe chemical stress that was lethal to them in single cultures. Co-habiting could lead to increased survival of pathogens in clinical settings and could be employed in biotechnological applications involving toxic milieus.


Assuntos
Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Detergentes/farmacologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Viabilidade Microbiana , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Dodecilsulfato de Sódio/farmacologia
20.
Environ Microbiol ; 16(5): 1424-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24447610

RESUMO

The distribution and the metabolic pathways of bacteria degrading steroid compounds released by eukaryotic organisms were investigated using the bile salt cholate as model substrate. Cholate-degrading bacteria could be readily isolated from freshwater environments. All isolated strains transiently released steroid degradation intermediates into culture supernatants before their further degradation. Cholate degradation could be initiated via two different reaction sequences. Most strains degraded cholate via a reaction sequence known from the model organism Pseudomonas sp. strain Chol1 releasing intermediates with a 3-keto-Δ(1,4) -diene structure of the steroid skeleton. The actinobacterium Dietzia sp. strain Chol2 degraded cholate via a different and yet unexplored reaction sequence releasing intermediates with a 3-keto-Δ(4,6) -diene-7-deoxy structure of the steroid skeleton such as 3,12-dioxo-4,6-choldienoic acid (DOCDA). Using DOCDA as substrate, two Alphaproteobacteria, strains Chol10-11, were isolated that produced the same cholate degradation intermediates as strain Chol2. With DOCDA as substrate for Pseudomonas sp. strain Chol1 only the side chain was degraded while the ring system was transformed into novel steroid compounds accumulating as dead-end metabolites. These metabolites could be degraded by the DOCDA-producing strains Chol10-11. These results indicate that bacteria with potentially different pathways for cholate degradation coexist in natural habitats and may interact via interspecies cross-feeding.


Assuntos
Bactérias/metabolismo , Colatos/metabolismo , Bactérias/isolamento & purificação , Colatos/química , Água Doce/microbiologia , Redes e Vias Metabólicas , Interações Microbianas , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa