Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Cell ; 177(4): 821-836.e16, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982602

RESUMO

Whole-genome-sequencing (WGS) of human tumors has revealed distinct mutation patterns that hint at the causative origins of cancer. We examined mutational signatures in 324 WGS human-induced pluripotent stem cells exposed to 79 known or suspected environmental carcinogens. Forty-one yielded characteristic substitution mutational signatures. Some were similar to signatures found in human tumors. Additionally, six agents produced double-substitution signatures and eight produced indel signatures. Investigating mutation asymmetries across genome topography revealed fully functional mismatch and transcription-coupled repair pathways. DNA damage induced by environmental mutagens can be resolved by disparate repair and/or replicative pathways, resulting in an assortment of signature outcomes even for a single agent. This compendium of experimentally induced mutational signatures permits further exploration of roles of environmental agents in cancer etiology and underscores how human stem cell DNA is directly vulnerable to environmental agents. VIDEO ABSTRACT.


Assuntos
Carcinógenos Ambientais/classificação , Neoplasias/genética , Carcinógenos Ambientais/efeitos adversos , Dano ao DNA/genética , Análise Mutacional de DNA/métodos , Reparo do DNA/genética , Replicação do DNA , Perfil Genético , Genoma Humano/genética , Humanos , Mutação INDEL/genética , Mutagênese , Mutação/genética , Células-Tronco Pluripotentes/metabolismo , Sequenciamento Completo do Genoma/métodos
2.
Chem Res Toxicol ; 37(2): 234-247, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232180

RESUMO

Human tissue three-dimensional (3D) organoid cultures have the potential to reproduce in vitro the physiological properties and cellular architecture of the organs from which they are derived. The ability of organoid cultures derived from human stomach, liver, kidney, and colon to metabolically activate three dietary carcinogens, aflatoxin B1 (AFB1), aristolochic acid I (AAI), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was investigated. In each case, the response of a target tissue (liver for AFB1; kidney for AAI; colon for PhIP) was compared with that of a nontarget tissue (gastric). After treatment cell viabilities were measured, DNA damage response (DDR) was determined by Western blotting for p-p53, p21, p-CHK2, and γ-H2AX, and DNA adduct formation was quantified by mass spectrometry. Induction of the key xenobiotic-metabolizing enzymes (XMEs) CYP1A1, CYP1A2, CYP3A4, and NQO1 was assessed by qRT-PCR. We found that organoids from different tissues can activate AAI, AFB1, and PhIP. In some cases, this metabolic potential varied between tissues and between different cultures of the same tissue. Similarly, variations in the levels of expression of XMEs were observed. At comparable levels of cytotoxicity, organoids derived from tissues that are considered targets for these carcinogens had higher levels of adduct formation than a nontarget tissue.


Assuntos
Adutos de DNA , Neoplasias , Humanos , Carcinógenos/toxicidade , Carcinógenos/metabolismo , Fígado/metabolismo , Organoides/metabolismo
3.
Mutagenesis ; 37(2): 143-154, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34147034

RESUMO

Advances in three-dimensional (3D) cell culture technology have led to the development of more biologically and physiologically relevant models to study organ development, disease, toxicology and drug screening. Organoids have been derived from many mammalian tissues, both normal and tumour, from adult stem cells and from pluripotent stem cells. Tissue organoids can retain many of the cell types and much of the structure and function of the organ of origin. Organoids derived from pluripotent stem cells display increased complexity compared with organoids derived from adult stem cells. It has been shown that organoids express many functional xenobiotic-metabolising enzymes including cytochrome P450s (CYPs). This has benefitted the drug development field in facilitating pre-clinical testing of more personalised treatments and in developing large toxicity and efficacy screens for a range of compounds. In the field of environmental and genetic toxicology, treatment of organoids with various compounds has generated responses that are close to those obtained in primary tissues and in vivo models, demonstrating the biological relevance of these in vitro multicellular 3D systems. Toxicological investigations of compounds in different tissue organoids have produced promising results indicating that organoids will refine future studies on the effects of environmental exposures and carcinogenic risk to humans. With further development and standardised procedures, advancing our understanding on the metabolic capabilities of organoids will help to validate their use to investigate the modes of action of environmental carcinogens.


Assuntos
Organoides , Células-Tronco Pluripotentes , Animais , Carcinogênese , Técnicas de Cultura de Células , Humanos , Mamíferos , Modelos Biológicos
4.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614051

RESUMO

Organoids are 3D cultures that to some extent reproduce the structure, composition and function of the mammalian tissues from which they derive, thereby creating in vitro systems with more in vivo-like characteristics than 2D monocultures. Here, the ability of human organoids derived from normal gastric, pancreas, liver, colon and kidney tissues to metabolise the environmental carcinogen benzo[a]pyrene (BaP) was investigated. While organoids from the different tissues showed varied cytotoxic responses to BaP, with gastric and colon organoids being the most susceptible, the xenobiotic-metabolising enzyme (XME) genes, CYP1A1 and NQO1, were highly upregulated in all organoid types, with kidney organoids having the highest levels. Furthermore, the presence of two key metabolites, BaP-t-7,8-dihydrodiol and BaP-tetrol-l-1, was detected in all organoid types, confirming their ability to metabolise BaP. BaP bioactivation was confirmed both by the activation of the DNA damage response pathway (induction of p-p53, pCHK2, p21 and γ-H2AX) and by DNA adduct formation. Overall, pancreatic and undifferentiated liver organoids formed the highest levels of DNA adducts. Colon organoids had the lowest responses in DNA adduct and metabolite formation, as well as XME expression. Additionally, high-throughput RT-qPCR explored differences in gene expression between organoid types after BaP treatment. The results demonstrate the potential usefulness of organoids for studying environmental carcinogenesis and genetic toxicology.


Assuntos
Benzo(a)pireno , Adutos de DNA , Organoides , Humanos , Ativação Metabólica , Benzo(a)pireno/toxicidade , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA/metabolismo , Fígado/metabolismo , Organoides/efeitos dos fármacos , Organoides/metabolismo
5.
Mutagenesis ; 35(6): 453-463, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33399867

RESUMO

Chemicals in commerce or under development must be assessed for genotoxicity; assessment is generally conducted using validated assays (e.g. Tk mouse lymphoma assay) as part of a regulatory process. Currently, the MutaMouse FE1 cell mutagenicity assay is undergoing validation for eventual use as a standard in vitro mammalian mutagenicity assay. FE1 cells have been shown to be metabolically competent with respect to some cytochrome P450 (CYP) isozymes; for instance, they can convert the human carcinogen benzo[a]pyrene into its proximate mutagenic metabolite. However, some contradictory results have been noted for other genotoxic carcinogens that require two-step metabolic activation (e.g. 2-acetylaminofluorene and 2-amino-3-methylimidazo[4,5-f]quinoxaline). Here, we examined three known or suspected human carcinogens, namely acrylamide, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 4-aminobiphenyl (4-ABP), together with their proximate metabolites (i.e. glycidamide, N-OH-PhIP and N-OH-4-ABP), to aid in the validation of the FE1 cell mutagenicity assay. Assessments of the parent compounds were conducted both in the presence and absence of an exogenous metabolic activation mixture S9; assessments of the metabolites were in the absence of S9. The most potent compound was N-OH-PhIP -S9, which elicited a mutant frequency (MF) level 5.3-fold over background at 5 µM. There was a 4.3-fold increase for PhIP +S9 at 5 µM, a 1.7-fold increase for glycidamide -S9 at 3.5 mM and a 1.5-fold increase for acrylamide +S9 at 4 mM. Acrylamide -S9 elicited a marginal 1.4-fold MF increase at 8 mM. Treatment with PhIP -S9, 4-ABP ±S9 and N-OH-4-ABP -S9 failed to elicit significant increases in lacZ MF with any of the treatment conditions tested. Gene expression of key CYP isozymes was quantified by RT-qPCR. Cyp1a1, 1a2 and 1b1 are required to metabolise PhIP and 4-ABP. Results showed that treatment with both compounds induced expression of Cyp1a1 and Cyp1b1 but not Cyp1a2. Cyp2e1, which catalyses the bioactivation of acrylamide to glycidamide, was not induced after acrylamide treatment. Overall, our results confirm that the FE1 cell mutagenicity assay has the potential for use alongside other, more traditional in vitro mutagenicity assays.


Assuntos
Carcinógenos Ambientais/farmacologia , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Acrilamida/metabolismo , Acrilamida/farmacologia , Acrilamida/toxicidade , Animais , Carcinógenos Ambientais/metabolismo , Carcinógenos Ambientais/toxicidade , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP2E1/genética , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/metabolismo , Imidazóis/farmacologia , Imidazóis/toxicidade , Pulmão/patologia , Metaboloma/efeitos dos fármacos , Camundongos , Mutagênese/genética , Testes de Mutagenicidade , Quinoxalinas/metabolismo , Quinoxalinas/farmacologia , Quinoxalinas/toxicidade
6.
Arch Toxicol ; 94(12): 4173-4196, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32886187

RESUMO

Acrylamide is a suspected human carcinogen formed during high-temperature cooking of starch-rich foods. It is metabolised by cytochrome P450 2E1 to its reactive metabolite glycidamide, which forms pre-mutagenic DNA adducts. Using the human TP53 knock-in (Hupki) mouse embryo fibroblasts (HUFs) immortalisation assay (HIMA), acrylamide- and glycidamide-induced mutagenesis was studied in the tumour suppressor gene TP53. Selected immortalised HUF clones were also subjected to next-generation sequencing to determine mutations across the whole genome. The TP53-mutant frequency after glycidamide exposure (1.1 mM for 24 h, n = 198) was 9% compared with 0% in cultures treated with acrylamide [1.5 (n = 24) or 3 mM (n = 6) for 48 h] and untreated vehicle (water) controls (n = 36). Most glycidamide-induced mutations occurred at adenines with A > T/T > A and A > G/T > C mutations being the most common types. Mutations induced by glycidamide occurred at specific TP53 codons that have also been found to be mutated in human tumours (i.e., breast, ovary, colorectal, and lung) previously associated with acrylamide exposure. The spectrum of TP53 mutations was further reflected by the mutations detected by whole-genome sequencing (WGS) and a distinct WGS mutational signature was found in HUF clones treated with glycidamide that was again characterised by A > G/T > C and A > T/T > A mutations. The WGS mutational signature showed similarities with COSMIC mutational signatures SBS3 and 25 previously found in human tumours (e.g., breast and ovary), while the adenine component was similar to COSMIC SBS4 found mostly in smokers' lung cancer. In contrast, in acrylamide-treated HUF clones, only culture-related background WGS mutational signatures were observed. In summary, the results of the present study suggest that glycidamide may be involved in the development of breast, ovarian, and lung cancer.


Assuntos
Acrilamida/toxicidade , Compostos de Epóxi/toxicidade , Fibroblastos/efeitos dos fármacos , Mutagênese , Mutagênicos/toxicidade , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular , Análise Mutacional de DNA , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Sequenciamento Completo do Genoma
7.
Toxicol Appl Pharmacol ; 366: 64-74, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30685480

RESUMO

The anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b5 (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b5/P450 Reductase Null (HBRN) mice. HRN mice have POR deleted specifically in hepatocytes; HBRN mice also have Cyb5 deleted in the liver. Mice were treated once with 10 mg/kg body weight ellipticine (n = 4/group) for 24 h. Ellipticine-DNA adduct levels measured by 32P-postlabelling were significantly lower in HRN and HBRN livers than in wild-type (WT) livers; however no significant difference was observed between HRN and HBRN livers. Ellipticine-DNA adduct formation in WT, HRN and HBRN livers correlated with Cyp1a and Cyp3a enzyme activities measured in hepatic microsomes in the presence of NADPH confirming the importance of P450 enzymes in the bioactivation of ellipticine in vivo. Hepatic microsomal fractions were also utilised in incubations with ellipticine and DNA in the presence of NADPH, cofactor for POR, and NADH, cofactor for Cyb5 reductase (Cyb5R), to examine ellipticine-DNA adduct formation. With NADPH adduct formation decreased as electron donors were lost which correlated with the formation of the reactive metabolites 12- and 13-hydroxy-ellipticine in hepatic microsomes. No difference in adduct formation was observed in the presence of NADH. Our study demonstrates that Cyb5 contributes to the P450-mediated bioactivation of ellipticine in vitro, but not in vivo.


Assuntos
Antineoplásicos/metabolismo , Citocromo-B(5) Redutase/deficiência , Citocromos b5/deficiência , Elipticinas/metabolismo , Hepatócitos/enzimologia , Fígado/enzimologia , Ativação Metabólica , Animais , Antineoplásicos/farmacologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo-B(5) Redutase/genética , Citocromos b5/genética , Adutos de DNA/metabolismo , Elipticinas/farmacologia , Genótipo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Fenótipo
8.
Mutagenesis ; 34(5-6): 413-420, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31612222

RESUMO

The environmental carcinogen benzo[a]pyrene (BaP) is presumed to exert its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. However, studies using the Hepatic Reductase Null (HRN) mouse model, in which cytochrome P450 oxidoreductase (POR), the electron donor to CYP enzymes, is deleted specifically in hepatocytes, have shown that loss of hepatic POR-mediated CYP function leads to greater BaP-DNA adduct formation in livers of these mice than in wild-type (WT) mice. Here, we used CRISPR/Cas9 technology to knockout (KO) POR expression in mouse hepatoma Hepa1c1c7 cells to create an in vitro model that can mimic the HRN mouse model. Western blotting confirmed the deletion of POR in POR KO Hepa1c1c7 cells whereas expression of other components of the mixed-function oxidase system including cytochrome b5 (Cyb5) and NADH:cytochrome b5 reductase (which can also serve as electron donors to CYP enzymes), and CYP1A1 was similar in BaP-exposed WT and POR KO Hepa1c1c7 cells. BaP exposure caused cytotoxicity in WT Hepa1c1c7 cells but not in POR KO Hepa1c1c7 cells. In contrast, CYP-catalysed BaP-DNA adduct levels were ~10-fold higher in POR KO Hepa1c1c7 cells than in WT Hepa1c1c7 cells, in concordance with the presence of higher levels of BaP metabolite (e.g. BaP-7,8-dihydrodiol) in the medium of cultured BaP-exposed POR KO Hepa1c1c7 cells. As was seen in the HRN mouse model, these results suggest that Cyb5 contributes to the bioactivation of BaP in POR KO Hepa1c1c7 cells. These results indicate that CYP enzymes may play a more important role in the detoxication of BaP, as opposed to its bioactivation.


Assuntos
Benzo(a)pireno/efeitos adversos , Sistema Enzimático do Citocromo P-450/genética , Adutos de DNA/efeitos dos fármacos , Dano ao DNA/genética , Oxirredutases/genética , Ativação Metabólica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Adutos de DNA/efeitos adversos , Adutos de DNA/genética , Dano ao DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microssomos Hepáticos/efeitos dos fármacos
9.
Occup Environ Med ; 76(1): 10-16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30425118

RESUMO

OBJECTIVES: This study aimed to assess the biological impact of occupational exposure to diesel exhaust (DE) including DE particles (DEP) from heavy-duty diesel-powered equipment in Norwegian tunnel finishing workers (TFW). METHODS: TFW (n=69) and referents (n=69) were investigated for bulky DNA adducts (by 32P-postlabelling) and expression of microRNAs (miRNAs) (by small RNA sequencing) in peripheral blood mononuclear cells (PBMC), as well as circulating free arachidonic acid (AA) and eicosanoid profiles in plasma (by liquid chromatography-tandem mass spectrometry). RESULTS: PBMC from TFW showed significantly higher levels of DNA adducts compared with referents. Levels of DNA adducts were also related to smoking habits. Seventeen miRNAs were significantly deregulated in TFW. Several of these miRNAs are related to carcinogenesis, apoptosis and antioxidant effects. Analysis of putative miRNA-gene targets revealed deregulation of pathways associated with cancer, alterations in lipid molecules, steroid biosynthesis and cell cycle. Plasma profiles showed higher levels of free AA and 15-hydroxyeicosatetraenoic acid, and lower levels of prostaglandin D2 and 9-hydroxyoctadecadienoic acid in TFW compared with referents. CONCLUSION: Occupational exposure to DE/DEP is associated with biological alterations in TFW potentially affecting lung homoeostasis, carcinogenesis, inflammation status and the cardiovascular system. Of particular importance is the finding that tunnel finishing work is associated with an increased level of DNA adducts formation in PBMC.


Assuntos
Indústria da Construção , Adutos de DNA/sangue , Lipídeos/sangue , MicroRNAs/sangue , Exposição Ocupacional/efeitos adversos , Emissões de Veículos/toxicidade , Adulto , Poluentes Ocupacionais do Ar/análise , Biomarcadores/sangue , Estudos Transversais , Humanos , Exposição por Inalação/análise , Leucócitos Mononucleares/química , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Noruega
10.
Part Fibre Toxicol ; 16(1): 4, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621739

RESUMO

BACKGROUND: Combustion of biodiesels in place of fossil diesel (FD) has been proposed as a method of reducing transport-related toxic emissions in Europe. While biodiesel exhaust (BDE) contains fewer hydrocarbons, total particulates and carbon monoxide than FD exhaust (FDE), its high nitrogen oxide and ultrafine particle content may still promote pulmonary pathophysiologies. MAIN BODY: Using a complement of in vitro and in vivo studies, this review documents progress in our understanding of pulmonary responses to BDE exposure. Focusing initially on hypothesis-driven, targeted analyses, the merits and limitations of comparing BDE-induced responses to those caused by FDE exposure are discussed within the contexts of policy making and exploration of toxicity mechanisms. The introduction and progression of omics-led workflows are also discussed, summarising the novel insights into mechanisms of BDE-induced toxicity that they have uncovered. Finally, options for the expansion of BDE-related omics screens are explored, focusing on the mechanistic relevance of metabolomic profiling and offering rationale for expansion beyond classical models of pulmonary exposure. CONCLUSION: Together, these discussions suggest that molecular profiling methods have identified mechanistically informative, novel and fuel-specific signatures of pulmonary responses to biodiesel exhaust exposure that would have been difficult to detect using traditional, hypothesis driven approaches alone.


Assuntos
Poluentes Atmosféricos/toxicidade , Biocombustíveis/toxicidade , Perfilação da Expressão Gênica/métodos , Pulmão/efeitos dos fármacos , Metabolômica/métodos , Emissões de Veículos/toxicidade , Animais , Humanos , Técnicas In Vitro , Pulmão/metabolismo , Pulmão/patologia , Metaboloma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
11.
Arch Toxicol ; 93(11): 3345-3366, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31602497

RESUMO

Exposure to aristolochic acid (AA) is associated with human nephropathy and urothelial cancer. The tumour suppressor TP53 is a critical gene in carcinogenesis and frequently mutated in AA-induced urothelial tumours. We investigated the impact of p53 on AAI-induced nephrotoxicity and DNA damage in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for 2 or 6 days. Renal histopathology showed a gradient of intensity in proximal tubular injury from Trp53(+/+) to Trp53(-/-) mice, especially after 6 days. The observed renal injury was supported by nuclear magnetic resonance (NMR)-based metabonomic measurements, where a consistent Trp53 genotype-dependent trend was observed for urinary metabolites that indicate aminoaciduria (i.e. alanine), lactic aciduria (i.e. lactate) and glycosuria (i.e. glucose). However, Trp53 genotype had no impact on AAI-DNA adduct levels, as measured by 32P-postlabelling, in either target (kidney and bladder) or non-target (liver) tissues, indicating that the underlying mechanisms of p53-related AAI-induced nephrotoxicity cannot be explained by differences in AAI genotoxicity. Performing gas chromatography-mass spectrometry (GC-MS) on kidney tissues showed metabolic pathways affected by AAI treatment, but again Trp53 status did not clearly impact on such metabolic profiles. We also cultured primary mouse embryonic fibroblasts (MEFs) derived from Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice and exposed them to AAI in vitro (50 µM for up to 48 h). We found that Trp53 genotype impacted on the expression of NAD(P)H:quinone oxidoreductase (Nqo1), a key enzyme involved in AAI bioactivation. Nqo1 induction was highest in Trp53(+/+) MEFs and lowest in Trp53(-/-) MEFs; and it correlated with AAI-DNA adduct formation, with lowest adduct levels being observed in AAI-exposed Trp53(-/-) MEFs. Overall, our results clearly demonstrate that p53 status impacts on AAI-induced renal injury, but the underlying mechanism(s) involved remain to be further explored. Despite the impact of p53 on AAI bioactivation and DNA damage in vitro, such effects were not observed in vivo.


Assuntos
Ácidos Aristolóquicos/toxicidade , Dano ao DNA , Fibroblastos/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Mutagênicos/toxicidade , Proteína Supressora de Tumor p53/genética , Animais , Ácidos Aristolóquicos/metabolismo , Células Cultivadas , Citocromo P-450 CYP1A1/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica/efeitos dos fármacos , Testes de Função Renal , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênicos/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética
12.
Int J Mol Sci ; 20(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817608

RESUMO

Exposure to aristolochic acid (AA) is linked to kidney disease and urothelial cancer in humans. The major carcinogenic component of the AA plant extract is aristolochic acid I (AAI). The tumour suppressor p53 is frequently mutated in AA-induced tumours. We previously showed that p53 protects from AAI-induced renal proximal tubular injury, but the underlying mechanism(s) involved remain to be further explored. In the present study, we investigated the impact of p53 on AAI-induced gene expression by treating Trp53(+/+), Trp53(+/-), and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for six days. The Clariom™ S Assay microarray was used to elucidate gene expression profiles in mouse kidneys after AAI treatment. Analyses in Qlucore Omics Explorer showed that gene expression in AAI-exposed kidneys is treatment-dependent. However, gene expression profiles did not segregate in a clear-cut manner according to Trp53 genotype, hence further investigations were performed by pathway analysis with MetaCore™. Several pathways were significantly altered to varying degrees for AAI-exposed kidneys. Apoptotic pathways were modulated in Trp53(+/+) kidneys; whereas oncogenic and pro-survival pathways were significantly altered for Trp53(+/-) and Trp53(-/-) kidneys, respectively. Alterations of biological processes by AAI in mouse kidneys could explain the mechanisms by which p53 protects from or p53 loss drives AAI-induced renal injury in vivo.


Assuntos
Ácidos Aristolóquicos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Genótipo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética
14.
Carcinogenesis ; 39(7): 851-859, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29726902

RESUMO

Many chemical carcinogens require metabolic activation via xenobiotic-metabolizing enzymes in order to exert their genotoxic effects. Evidence from numerous in-vitro studies, utilizing reconstituted systems, microsomal fractions and cultured cells, implicates cytochrome P450 enzymes as being the predominant enzymes responsible for the metabolic activation of many procarcinogens. With the development of targeted gene disruption methodologies, knockout mouse models have been generated that allow investigation of the in-vivo roles of P450 enzymes in the metabolic activation of carcinogens. This review covers studies in which five procarcinogens representing different chemical classes, benzo[a]pyrene, 4-aminobiphenyl (4-ABP), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-9H-pyrido[2,3-b]indole and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, have been administered to different P450 knockout mouse models. Paradoxically, while in-vitro studies using subcellular fractions enriched with P450 enzymes and their cofactors have been widely used to determine the pathways of activation of carcinogens, there is evidence from the in-vivo studies of cases where these same enzyme systems appear to have a more predominant role in carcinogen detoxication rather than activation.


Assuntos
Carcinógenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inativação Metabólica/fisiologia , Animais , Benzo(a)pireno/metabolismo , Butanonas/metabolismo , Humanos , Transdução de Sinais/fisiologia
15.
Mol Carcinog ; 57(5): 606-618, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29323757

RESUMO

Extra-hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self-defence mechanism but has potential to contribute to the local activation of carcinogens. Bladder epithelium (urothelium) is bathed in excreted urinary toxicants and pro-carcinogens. This study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in normal human urothelial (NHU) cells maintained in both undifferentiated and functional barrier-forming differentiated states in vitro. However, ethoxyresorufin O-deethylation (EROD) activity, the generation of reactive BaP metabolites and BaP-DNA adducts, were predominantly detected in differentiated NHU cell cultures. This gain-of-function was attributable to the expression of POR, an essential electron donor for all CYPs, which was significantly upregulated as part of urothelial differentiation. Immunohistology of muscle-invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. Stratification of MIBC biopsies into "luminal" and "basal" groups, based on GATA3 and cytokeratin 5/6 labeling, showed POR over-expression by a subgroup of the differentiated luminal tumors. In bladder cancer cell lines, CYP1-activity was undetectable/low in basal PORlo T24 and SCaBER cells and higher in the luminal POR over-expressing RT4 and RT112 cells than in differentiated NHU cells, indicating that CYP-function is related to differentiation status in bladder cancers. This study establishes POR as a predictive biomarker of metabolic potential. This has implications in bladder carcinogenesis for the hepatic versus local activation of carcinogens and as a functional predictor of the potential for MIBC to respond to prodrug therapies.


Assuntos
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise Serial de Tecidos , Neoplasias da Bexiga Urinária/genética , Urotélio/citologia , Urotélio/metabolismo , Xenobióticos/farmacologia
16.
Mutagenesis ; 33(4): 311-321, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30215795

RESUMO

The tumour suppressor p53, encoded by TP53, is a key player in a wide network of signalling pathways. We investigated its role in the bioactivation of the environmental carcinogen 3-nitrobenzanthrone (3-NBA)found in diesel exhaust and its metabolites 3-aminobenzanthrone (3-ABA) and N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) in a panel of isogenic human colorectal HCT116 cells differing only with respect to their TP53 status [i.e. TP53(+/+), TP53(+/-), TP53(-/-), TP53(R248W/+) or TP53(R248W/-)]. As a measure of metabolic competence, DNA adduct formation was determined using 32P-postlabelling. Wild-type (WT) p53 did not affect the bioactivation of 3-NBA; no difference in DNA adduct formation was observed in TP53(+/+), TP53(+/-) and TP53(-/-) cells. Bioactivation of both metabolites 3-ABA and N-OH-3-ABA on the other hand was WT-TP53 dependent. Lower 3-ABA- and N-OH-3-ABA-DNA adduct levels were found in TP53(+/-) and TP53(-/-) cells compared to TP53(+/+) cells, and p53's impact was attributed to differences in cytochrome P450 (CYP) 1A1 expression for 3-ABA whereas for N-OH-3-ABA, an impact of this tumour suppressor on sulphotransferase (SULT) 1A1/3 expression was detected. Mutant R248W-p53 protein function was similar to or exceeded the ability of WT-p53 in activating 3-NBA and its metabolites, measured as DNA adducts. However, identification of the xenobiotic-metabolising enzyme(s) (XMEs), through which mutant-p53 regulates these responses, proved difficult to decipher. For example, although both mutant cell lines exhibited higher CYP1A1 induction after 3-NBA treatment compared to TP53(+/+) cells, 3-NBA-derived DNA adduct levels were only higher in TP53(R248W/-) cells but not in TP53(R248W/+) cells. Our results show that p53's influence on carcinogen activation depends on the agent studied and thereby on the XMEs that mediate the bioactivation of that particular compound. The phenomenon of p53 regulating CYP1A1 expression in human cells is consistent with other recent findings; however, this is the first study highlighting the impact of p53 on sulphotransferase-mediated (i.e. SULT1A1) carcinogen metabolism in human cells.


Assuntos
Ativação Metabólica/efeitos dos fármacos , Poluentes Atmosféricos/efeitos adversos , Benzo(a)Antracenos/efeitos adversos , Carcinógenos Ambientais/efeitos adversos , Proteína Supressora de Tumor p53/metabolismo , Poluição do Ar/efeitos adversos , Antracenos/efeitos adversos , Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Células HCT116 , Humanos , Inativação Metabólica/efeitos dos fármacos , Bases de Schiff/efeitos adversos , Emissões de Veículos/toxicidade
17.
Arch Toxicol ; 92(4): 1625-1638, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29368147

RESUMO

Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b 5 /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes. In HBRN mice the microsomal haemoprotein cytochrome b 5 , which can also act as an electron donor from cytochrome b 5 reductase to P450s, is also deleted in the liver. Wild-type (WT), HRN and HBRN mice were treated by i.p. injection with 125 mg/kg body weight BaP for 24 h. Hepatic microsomal fractions were isolated from BaP-treated and untreated mice. In vitro incubations carried out with BaP-pretreated microsomal fractions, BaP and DNA resulted in significantly higher BaP-DNA adduct formation with WT microsomal fractions compared to those from HRN or HBRN mice. Adduct formation (i.e. 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP [dG-N2-BPDE]) correlated with observed CYP1A activity and metabolite formation (i.e. BaP-7,8-dihydrodiol) when NADPH or NADH was used as enzymatic cofactors. BaP-DNA adduct levels (i.e. dG-N2-BPDE) in vivo were significantly higher (~ sevenfold) in liver of HRN mice than WT mice while no significant difference in adduct formation was observed in liver between HBRN and WT mice. Our results demonstrate that POR and cytochrome b 5 both modulate P450-mediated activation of BaP in vitro. However, hepatic P450 enzymes in vivo appear to be more important for BaP detoxification than its activation.


Assuntos
Benzo(a)pireno/metabolismo , Citocromo-B(5) Redutase/metabolismo , Adutos de DNA/metabolismo , Hepatócitos/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Animais , Camundongos , Camundongos Knockout , Microssomos Hepáticos/enzimologia
18.
BMC Public Health ; 18(1): 260, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29448939

RESUMO

The final meeting of the EXPOsOMICS project "Final Policy Workshop and Stakeholder Consultation" took place 28-29 March 2017 to present the main results of the project and discuss their implications both for future research and for regulatory and policy activities. This paper summarizes presentations and discussions at the meeting related with the main results and advances in exposome research achieved through the EXPOsOMICS project; on other parallel research initiatives on the study of the exposome in Europe and in the United States and their complementarity to EXPOsOMICS; lessons learned from these early studies on the exposome and how they may shape the future of research on environmental exposure assessment; and finally the broader implications of exposome research for risk assessment and policy development on environmental exposures. The main results of EXPOsOMICS in relation to studies of the external exposome and internal exposome in relation to both air pollution and water contaminants were presented as well as new technologies for environmental health research (adductomics) and advances in statistical methods. Although exposome research strengthens the scientific basis for policy development, there is a need in terms of showing added value for public health to: improve communication of research results to non-scientific audiences; target research to the broader landscape of societal challenges; and draw applicable conclusions. Priorities for future work include the development and standardization of methodologies and technologies for assessing the external and internal exposome, improved data sharing and integration, and the demonstration of the added value of exposome science over conventional approaches in answering priority policy questions.


Assuntos
Exposição Ambiental/efeitos adversos , Saúde Ambiental , Política de Saúde , Poluição do Ar/efeitos adversos , Pesquisa Biomédica , Congressos como Assunto , Europa (Continente) , Humanos , Medição de Risco , Participação dos Interessados , Poluição da Água/efeitos adversos
19.
Int J Cancer ; 140(4): 877-887, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27813088

RESUMO

TP53 mutations occur in half of all human tumours. Mutagen-induced or spontaneous TP53 mutagenesis can be studied in vitro using the human TP53 knock-in (Hupki) mouse embryo fibroblast (HUF) immortalisation assay (HIMA). TP53 mutations arise in up to 30% of mutagen-treated, immortalised HUFs; however, mutants are not identified until TP53 sequence analysis following immortalisation (2-5 months) and much effort is expended maintaining TP53-WT cultures. In order to improve the selectivity of the HIMA for HUFs harbouring TP53 mutations, we explored the use of Nutlin-3a, an MDM2 inhibitor that leads to stabilisation and activation of wild-type (WT) p53. First, we treated previously established immortal HUF lines carrying WT or mutated TP53 with Nutlin-3a to examine the effect on cell growth and p53 activation. Nutlin-3a induced the p53 pathway in TP53-WT HUFs and inhibited cell growth, whereas most TP53-mutated HUFs were resistant to Nutlin-3a. We then assessed whether Nutlin-3a treatment could discriminate between TP53-WT and TP53-mutated cells during the HIMA (n = 72 cultures). As immortal clones emerged from senescent cultures, each was treated with 10 µM Nutlin-3a for 5 days and observed for sensitivity or resistance. TP53 was subsequently sequenced from all immortalised clones. We found that all Nutlin-3a-resistant clones harboured TP53 mutations, which were diverse in position and functional impact, while all but one of the Nutlin-3a-sensitive clones were TP53-WT. These data suggest that including a Nutlin-3a counter-screen significantly improves the specificity and efficiency of the HIMA, whereby TP53-mutated clones are selected prior to sequencing and TP53-WT clones can be discarded.


Assuntos
Genes p53 , Imidazóis/farmacologia , Piperazinas/farmacologia , Animais , Linhagem Celular Transformada , Sobrevivência Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Células Cultivadas , Células Clonais , Resistência a Medicamentos , Fibroblastos , Técnicas de Introdução de Genes , Humanos , Camundongos , Mutação , Oxigênio/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Seleção Genética , Transdução de Sinais/efeitos dos fármacos
20.
Chem Res Toxicol ; 30(12): 2120-2129, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29092396

RESUMO

Covalently modified blood proteins (e.g., serum albumin adducts) are increasingly being viewed as potential biomarkers via which the environmental causes of human diseases may be understood. The notion that some (perhaps many) modifications have yet to be discovered has led to the development of untargeted adductomics methods, which attempt to capture entire populations of adducts. One such method is fixed-step selected reaction monitoring (FS-SRM), which analyses distributions of serum albumin adducts via shifts in the mass of a tryptic peptide [Li et al. (2011) Mol. Cell. Proteomics 10, M110.004606]. Working on the basis that FS-SRM might be able to detect biological variation due to environmental factors, we aimed to scale the methodology for use in an epidemiological setting. Development of sample preparation methods led to a batch workflow with increased throughput and provision for quality control. Challenges posed by technical and biological variation were addressed in the processing and interpretation of the data. A pilot study of 20 smokers and 20 never-smokers provided evidence of an effect of smoking on levels of putative serum albumin adducts. Differences between smokers and never-smokers were most apparent in putative adducts with net gains in mass between 105 and 114 Da (relative to unmodified albumin). The findings suggest that our implementation of FS-SRM could be useful for studying other environmental factors with relevance to human health.


Assuntos
Albumina Sérica/análise , Fumar/sangue , Adulto , Bélgica/epidemiologia , Biomarcadores/sangue , Índice de Massa Corporal , Estudos de Coortes , Humanos , Masculino , Projetos Piloto , Controle de Qualidade , Fumar/epidemiologia , Extração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa