Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
FASEB J ; 35(6): e21682, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042210

RESUMO

Over the last decade, multiple studies have highlighted the essential role of gut microbiota in normal infant development. However, the sensitive periods during which gut bacteria are established and become associated with physical growth and maturation of the brain are still poorly defined. This study tracked the assembly of the intestinal microbiota during the initial nursing period, and changes in community structure after transitioning to solid food in infant rhesus monkeys (Macaca mulatta). Anthropometric measures and rectal swabs were obtained at 2-month intervals across the first year of life and bacterial taxa identified by 16S rRNA gene sequencing. At 12 months of age, total brain and cortical regions volumes were quantified through structural magnetic resonance imaging. The bacterial community structure was dynamic and characterized by discrete maturational phases, reflecting an early influence of breast milk and the later transition to solid foods. Commensal microbial taxa varied with diet similar to findings in other animals and human infants; however, monkeys differ in the relative abundances of Lactobacilli and Bifidobacteria, two taxa predominant in breastfed human infants. Higher abundances of taxa in the phylum Proteobacteria during nursing were predictive of slower growth trajectories and smaller brain volumes at one year of age. Our findings define discrete phases of microbial succession in infant monkeys and suggest there may be a critical period during nursing when endogenous differences in certain taxa can shift the community structure and influence the pace of physical growth and the maturational trajectory of the brain.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Encéfalo/fisiologia , Microbioma Gastrointestinal , Leite/microbiologia , Proteobactérias/fisiologia , Animais , Encéfalo/microbiologia , Dieta , Fezes/microbiologia , Feminino , Macaca mulatta , Masculino
2.
Arch Microbiol ; 201(4): 519-530, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30406295

RESUMO

Nitrate and nitrite reduction are of paramount importance for nitrogen assimilation and anaerobic metabolism, and understanding the specific roles of each participating reductase is necessary to describe the biochemical balance that dictates cellular responses to their environments. The soluble, cytoplasmic siroheme NADH-nitrite reductase (Nir) in Escherichia coli is necessary for nitrate/nitrite assimilation but has also been reported to either "detoxify" nitrite, or to carry out fermentative ammonification in support of anaerobic catabolism. Theoretically, nitrite detoxification would be important for anaerobic growth on nitrate, during which excess nitrite would be reduced to ammonium. Fermentative ammonification by Nir would be important for maximization of non-respiratory ATP production during anaerobic growth in the presence of nitrite. Experiments reported here were designed to test the potential role of Nir in fermentative ammonification directly by growing E. coli along with mutant strains lacking Nir or the respiratory nitrite reductase (Nrf) under anaerobic conditions in defined media while monitoring nitrogen utilization and fermentation metabolites. To focus on the role of Nir in fermentative ammonification, pH control was used in most experiments to eliminate nitrite toxicity due to nitric acid formation. Our results demonstrate that Nir confers a significant benefit during fermentative growth that reflects fermentative ammonification rather than detoxification. We conclude that fermentative ammonification by Nir allows for the energetically favorable fermentation of glucose to formate and acetate. These results and conclusions are discussed in light of the roles of Nir in other bacteria and in plants.


Assuntos
Escherichia coli/enzimologia , Fermentação , Nitrito Redutase (NAD(P)H)/metabolismo , Compostos de Amônio/metabolismo , Anaerobiose , Escherichia coli/genética , Nitrito Redutase (NAD(P)H)/genética , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Nitritos/metabolismo
3.
J Pediatr Gastroenterol Nutr ; 69(3): 363-369, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31107796

RESUMO

OBJECTIVES: Gut bacteria play an essential role during infancy and are strongly influenced by the mode of birth and feeding. A primate model was used to investigate the benefits of exposure to the mother or conversely the negative impact of early nursery rearing on microbial colonization. METHOD: Rectal swabs were obtained from rhesus macaques born vaginally and mother-reared (MR, N = 35) or delivered primarily via cesarean-section and human-reared (HR, N = 19). Microbiome composition was determined by rRNA gene amplicon sequencing at 2, 4, and 8 weeks of age and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs used to assess influences on functional metabolic pathways in the gut. Growth trajectories and incidence of diarrheic symptoms were evaluated. RESULTS: The microbial community structure was different between MR and HR infants with respect to phylogeny and abundance at all 3 ages. When examining dominant phyla, HR infants had a higher Firmicutes-to-Bacteroidetes ratio. At the genus level, breast milk-dependent commensal taxa and adult-typical genera were more abundant in MR infants. This difference resulted in a corresponding shift in the predicted metabolic effects, specifically for microbial genes associated with metabolism and immune function. HR infants had faster growth trajectories (P < 0.001), but more diarrheic symptoms by 6 months postnatal (P = 0.008). CONCLUSIONS: MR infants acquired adult-typical microbiota more quickly, and had higher levels of several beneficial commensal taxa. Cesarean-delivered and formula-fed infants had different developmental trajectories of bacterial colonization. Establishment of the gut microbiome was associated with an infant's growth trajectory, and implicated in the subsequent vulnerability to Campylobacter infections associated with diarrhea in infant monkeys.


Assuntos
Leite , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Macaca mulatta , Modelos Animais
4.
Psychosom Med ; 79(8): 888-897, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28178033

RESUMO

OBJECTIVE: Our aim was to evaluate the bacterial profiles of young monkeys as they were weaned into peer groups with a particular focus on Prevotella, an important taxon in both human and nonhuman primates. The weaning of infants and increased social contact with peers is a developmental stage that is likely to affect the gut microbiome. METHODS: Gut bacteria were assessed in 63 rhesus monkeys living in social groups comprised of 4 to 7 individuals. Two groups were assessed prospectively on day 1 and 2 weeks after rehousing away from the mother and group formation. Ten additional groups were assessed at 2 weeks after group establishment. Fecal genomic DNA was extracted and 16S ribosomal RNA sequenced by Illumina MiSeq (5 social groups) and 454-amplicon pyrosequencing (7 social groups). RESULTS: Combining weaned infants into small social groups led to a microbial convergence by 2 weeks (p < .001). Diversity analyses indicated more similar community structure within peer groups than across groups (p < .01). Prevotella was the predominant taxon, and its abundance differed markedly across individuals. Indices of richness, microbial profiles, and less abundant taxa were all associated with the Prevotella levels. Functional Kyoto Encyclopedia of Genes and Genomes analyses suggested corresponding shifts in metabolic pathways. CONCLUSIONS: The formation of small groups of young rhesus monkeys was associated with significant shifts in the gut microbiota. The profiles were closely associated with the abundance of Prevotella, a predominant taxon in the rhesus monkey gut. Changes in the structure of the gut microbiome are likely to induce differences in metabolic and physiologic functioning.


Assuntos
Comportamento Animal/fisiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Prevotella , Comportamento Social , Animais , Feminino , Macaca mulatta , Masculino , Prevotella/genética , Prevotella/isolamento & purificação , RNA Ribossômico 16S
5.
Am J Primatol ; 79(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28898440

RESUMO

The lower reproductive tract of nonhuman primates is colonized with a diverse microbiota, resembling bacterial vaginosis (BV), a gynecological condition associated with negative reproductive outcomes in women. Our 4 aims were to: (i) assess the prevalence of low Lactobacilli and a BV-like profile in female rhesus monkeys; (ii) quantify cytokines in their cervicovaginal fluid (CVF); (iii) examine the composition and structure of their mucosal microbiota with culture-independent sequencing methods; and (iv) evaluate the potential influence on reproductive success. CVF specimens were obtained from 27 female rhesus monkeys for Gram's staining, and to determine acidity (pH), and quantify proinflammatory cytokines. Based on Nugent's classification, 40% had a score of 7 or higher, which would be indicative of BV in women. Nugent scores were significantly correlated with the pH of the CVF. Interleukin-1ß was present at high concentrations, but not further elevated by high Nugent scores. Vaginal swabs were obtained from eight additional females to determine microbial diversity by rRNA gene amplicon sequencing. At the phylum level, the Firmicutes/Bacteroidetes ratio was low. The relative abundance of Lactobacilli was also low (between 3% and 17%), and 11 other genera were present at >1%. However, neither the microbial diversity in the community structure, nor high Nugent scores, was associated with reduced fecundity. Female monkeys provide an opportunity to understand how reproductive success can be sustained in the presence of a diverse polymicrobial community in the reproductive tract.


Assuntos
Lactobacillus , Macaca mulatta/microbiologia , Vaginose Bacteriana/veterinária , Animais , Feminino , Microbiota , Reprodução , Vagina
6.
Infect Immun ; 82(8): 3359-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24866801

RESUMO

Bovine digital dermatitis (DD) is a leading cause of lameness in dairy cattle throughout the world. Despite 35 years of research, the definitive etiologic agent associated with the disease process is still unknown. Previous studies have demonstrated that multiple bacterial species are associated with lesions, with spirochetes being the most reliably identified organism. This study details the deep sequencing-based metagenomic evaluation of 48 staged DD biopsy specimens collected during a 3-year longitudinal study of disease progression. Over 175 million sequences were evaluated by utilizing both shotgun and 16S metagenomic techniques. Based on the shotgun sequencing results, there was no evidence of a fungal or DNA viral etiology. The bacterial microbiota of biopsy specimens progresses through a systematic series of changes that correlate with the novel morphological lesion scoring system developed as part of this project. This scoring system was validated, as the microbiota of each stage was statistically significantly different from those of other stages (P < 0.001). The microbiota of control biopsy specimens were the most diverse and became less diverse as lesions developed. Although Treponema spp. predominated in the advanced lesions, they were in relatively low abundance in the newly described early lesions that are associated with the initiation of the disease process. The consortium of Treponema spp. identified at the onset of disease changes considerably as the lesions progress through the morphological stages identified. The results of this study support the hypothesis that DD is a polybacterial disease process and provide unique insights into the temporal changes in bacterial populations throughout lesion development.


Assuntos
Dermatite Digital/microbiologia , Microbiota , Animais , Biópsia , Bovinos , Sequenciamento de Nucleotídeos em Larga Escala , Estudos Longitudinais , Metagenômica , Pele/microbiologia
7.
Toxicol Pathol ; 42(1): 182-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24129759

RESUMO

Colorectal cancer is one of the leading causes of cancer-related deaths in the United States, and generally, as countries climb the economic ladder, their rates of colon cancer increase. Colon cancer was an early disease where key genetic mutations were identified as important in disease progression, and there is considerable interest in determining whether specific mutations sensitize the colon to cancer prevention strategies. Epidemiological studies have revealed that fiber- and vegetable-rich diets and physical activity are associated with reduced rates of colon cancer, while consumption of red and processed meat, or alcoholic beverages, and overconsumption as reflected in obesity are associated with increased rates. Animal studies have probed these effects and suggested directions for further refinement of diet in colon cancer prevention. Recently a central role for the microorganisms in the gastrointestinal tract in colon cancer development is being probed, and it is hypothesized that the microbes may integrate diet and host genetics in the etiology of the disease. This review provides background on dietary, genetic, and microbial impacts on colon cancer and describes an ongoing project using rodent models to assess the ability of digestion-resistant starch in the integration of these factors with the goal of furthering colon cancer prevention.


Assuntos
Colo/metabolismo , Colo/microbiologia , Neoplasias do Colo/genética , Neoplasias do Colo/microbiologia , Dieta , Animais , Dieta com Restrição de Carboidratos , Fibras na Dieta/administração & dosagem , Modelos Animais de Doenças , Humanos , Microbiota/genética
8.
Front Microbiol ; 15: 1384552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601944

RESUMO

Bacterial antibiotic persistence is a phenomenon where bacteria are exposed to an antibiotic and the majority of the population dies while a small subset enters a low metabolic, persistent, state and are able to survive. Once the antibiotic is removed the persistent population can resuscitate and continue growing. Several different molecular mechanisms and pathways have been implicated in this phenomenon. A common mechanism that may underly bacterial antibiotic persistence is perturbations in protein synthesis. To investigate this mechanism, we characterized four distinct metG mutants for their ability to increase antibiotic persistence. Two metG mutants encode changes near the catalytic site of MetRS and the other two mutants changes near the anticodon binding domain. Mutations in metG are of particular interest because MetRS is responsible for aminoacylation both initiator tRNAMet and elongator tRNAMet indicating that these mutants could impact translation initiation and/or translation elongation. We observed that all the metG mutants increased the level of antibiotic persistence as did reduced transcription levels of wild type metG. Although, the MetRS variants did not have an impact on MetRS activity itself, they did reduce translation rates. It was also observed that the MetRS variants affected the proofreading mechanism for homocysteine and that these mutants' growth is hypersensitive to homocysteine. Taken together with previous findings, our data indicate that both reductions in cellular Met-tRNAMet synthetic capacity and reduced proofreading of homocysteine by MetRS variants are positive determinants for bacterial antibiotic persistence.

9.
ACS Nano ; 18(19): 12117-12133, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38648373

RESUMO

Ulcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.


Assuntos
Colite Ulcerativa , Proteínas de Membrana , Micelas , Nucleotidiltransferases , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
10.
J Bacteriol ; 195(4): 647-57, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23204462

RESUMO

Bacterial persistence is characterized by the ability of a subpopulation within bacterial cultures to survive exposure to antibiotics and other lethal treatments. The surviving persisters are not the result of genetic changes but represent epigenetic variants that are in a physiological state where growth is inhibited. Since characterization of persisters has been performed mainly in Escherichia coli K-12, we sought to identify mechanisms of persistence in the pathogen Salmonella enterica serovar Typhimurium. Isolation of new highly persistent mutants revealed that the shpAB locus (Salmonella high persistence) imparted a 3- to 4-order-of-magnitude increase in survival after ampicillin exposure throughout its growth phase and protected the population against exposure to multiple antibiotics. Genetic characterization revealed that shpAB is a newly discovered toxin-antitoxin (TA) module. The high-persistence phenotype was attributed to a nonsense mutation in the 3' end of the shpB gene encoding an antitoxin protein. Characteristic of other TA modules, shpAB is autoregulated, and high persistence depends on the Lon protease.


Assuntos
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Salmonella typhimurium/metabolismo , Sequência de Aminoácidos , Ampicilina/farmacologia , Antibacterianos/farmacologia , Antitoxinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Mapeamento Cromossômico , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Engenharia Genética , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Plasmídeos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Homologia de Sequência de Aminoácidos
11.
Infect Immun ; 81(11): 4053-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959719

RESUMO

The autoinducer-2 (AI-2) quorum-sensing system has been linked to diverse phenotypes and regulatory changes in pathogenic bacteria. In the present study, we performed a molecular and biochemical characterization of the AI-2 system in Yersinia pestis, the causative agent of plague. In strain CO92, the AI-2 signal is produced in a luxS-dependent manner, reaching maximal levels of 2.5 µM in the late logarithmic growth phase, and both wild-type and pigmentation (pgm) mutant strains made equivalent levels of AI-2. Strain CO92 possesses a chromosomal lsr locus encoding factors involved in the binding and import of AI-2, and confirming this assignment, an lsr deletion mutant increased extracellular pools of AI-2. To assess the functional role of AI-2 sensing in Y. pestis, microarray studies were conducted by comparing Δpgm strain R88 to a Δpgm ΔluxS mutant or a quorum-sensing-null Δpgm ΔypeIR ΔyspIR ΔluxS mutant at 37°C. Our data suggest that AI-2 quorum sensing is associated with metabolic activities and oxidative stress genes that may help Y. pestis survive at the host temperature. This was confirmed by observing that the luxS mutant was more sensitive to killing by hydrogen peroxide, suggesting a potential requirement for AI-2 in evasion of oxidative damage. We also show that a large number of membrane protein genes are controlled by LuxS, suggesting a role for quorum sensing in membrane modeling. Altogether, this study provides the first global analysis of AI-2 signaling in Y. pestis and identifies potential roles for the system in controlling genes important to disease.


Assuntos
Regulação Bacteriana da Expressão Gênica , Homosserina/análogos & derivados , Lactonas/metabolismo , Percepção de Quorum , Yersinia pestis/genética , Membrana Celular/fisiologia , Deleção de Genes , Perfilação da Expressão Gênica , Genes Bacterianos , Homosserina/metabolismo , Proteínas de Membrana/metabolismo , Análise em Microsséries , Estresse Oxidativo , Estresse Fisiológico , Yersinia pestis/fisiologia
12.
Microbiol Resour Announc ; 12(10): e0042423, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37732802

RESUMO

Avian pathogenic Escherichia coli found in the avian intestinal tract can cause systemic disease in birds and act as a foodborne zoonotic pathogen associated with human disease. Here, we report the complete genome sequence of E. coli strain H1998 isolated from a chicken with colisepticemia.

13.
Lab Chip ; 23(6): 1649-1663, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36751868

RESUMO

To improve our understanding of how the central nervous system functions in health and disease, we report the development of an integrated chip for studying the effects of the neurotransmitters dopamine and serotonin on adult rat hippocampal progenitor cell (AHPC) neurospheroids. This chip allows dopamine or serotonin located in one chamber to diffuse to AHPC neurospheroids cultured in an adjacent chamber through a built-in diffusion barrier created by an array of intentionally misaligned micropillars. The gaps among the micropillars are filled with porous poly(ethylene glycol) (PEG) gel to tune the permeability of the diffusion barrier. An electrochemical sensor is also integrated within the chamber where the neurospheroids can be cultured, thereby allowing monitoring of the concentrations of dopamine or serotonin. Experiments show that concentrations of the neurotransmitters inside the neurospheroid chamber can be increased over a period of several hours to over 10 days by controlling the compositions of the PEG gel inside the diffusion barrier. The AHPC neurospheroids cultured in the chip remain highly viable following dopamine or serotonin treatment. Cell proliferation and neuronal differentiation have also been observed following treatment, revealing that the AHPC neurospheroids are a valuable in vitro brain model for neurogenesis research. Finally, we show that by tuning the permeability of diffusion barrier, we can block transfer of Escherichia coli cells across the diffusion barrier, while allowing dopamine or serotonin to pass through. These results suggest the feasibility of using the chip to better understand the interactions between microbiota and brain via the gut-brain axis.


Assuntos
Dopamina , Microfluídica , Ratos , Animais , Serotonina , Encéfalo , Neurotransmissores
14.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107993

RESUMO

The central dogma of molecular biology is a key concept for undergraduate students in the life sciences as it describes the flow of information in living systems from gene-to-gene product. However, despite often being covered in many introductory life science courses, students may still have misconceptions surrounding the central dogma even as they move on to advanced courses. Active learning strategies such as laboratory activities can be useful in addressing such misconceptions. In the laboratory exercise presented here, senior undergraduate students explore the intricacies of nonsense suppressor mutations to challenge their understanding of the central dogma. The students introduce a plasmid carrying a nonfunctional chromogenic protein gene due to a nonsense mutation in a codon encoding the chromophore to various nonsense suppressor strains of Escherichia coli. Students then observe distinct chromogenic phenotypes, depending on the suppressor strain. Students showed a moderate increase in understanding of the central dogma. While the central dogma remains a challenging concept, active learning strategies like the one presented here can help reduce conceptual errors.

15.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798310

RESUMO

LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.

16.
Microorganisms ; 11(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37374982

RESUMO

Vaginal and rectal specimens were obtained from cycling, pregnant, and nursing rhesus monkeys to assess pregnancy-related changes in the commensal bacteria in their reproductive and intestinal tracts. Using 16S rRNA gene amplicon sequencing, significant differences were found only in the vagina at mid-gestation, not in the hindgut. To verify the apparent stability in gut bacterial composition at mid-gestation, the experiment was repeated with additional monkeys, and similar results were found with both 16S rRNA gene amplicon and metagenomic sequencing. A follow-up study investigated if bacterial changes in the hindgut might occur later in pregnancy. Gravid females were assessed closer to term and compared to nonpregnant females. By late pregnancy, significant differences in bacterial composition, including an increased abundance of 4 species of Lactobacillus and Bifidobacterium adolescentis, were detected, but without a shift in the overall community structure. Progesterone levels were assessed as a possible hormone mediator of bacterial change. The relative abundance of only some taxa (e.g., Bifidobacteriaceae) were specifically associated with progesterone. In summary, pregnancy changes the microbial profiles in monkeys, but the bacterial diversity in their lower reproductive tract is different from women, and the composition of their intestinal symbionts remains stable until late gestation when several Firmicutes become more prominent.

17.
Front Bioinform ; 2: 869150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304298

RESUMO

The Pathway Tools (PTools) software provides a suite of capabilities for storing and analyzing integrated collections of genomic and metabolic information in the form of organism-specific Pathway/Genome Databases (PGDBs). A microbial community is represented in PTools by generating a PGDB from each metagenome-assembled genome (MAG). PTools computes a metabolic reconstruction for each organism, and predicts its operons. The properties of individual MAGs can be investigated using the many search and visualization operations within PTools. PTools also enables the user to investigate the properties of the microbial community by issuing searches across the full community, and by performing comparative operations across genome and pathway information. The software can generate a metabolic network diagram for the community, and it can overlay community omics datasets on that network diagram. PTools also provides a tool for searching for metabolic transformation routes across an organism community.

18.
PLoS One ; 17(4): e0266005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381031

RESUMO

The gastrointestinal microbiota begins to be acquired at birth and continually matures through early adolescence. Despite the relevance for gut health, few studies have evaluated the impact of pathobiont colonization of neonates on the severity of colitis later in life. LF82 is an adherent invasive E. coli strain associated with ileal Crohn's disease. The aim of this study was to evaluate the severity of dextran sodium sulfate (DSS)-induced colitis in mice following E. coli LF82 colonization. Gnotobiotic mice harboring the altered Schaedler flora (ASF) were used as the model. While E. coli LF82 is neither adherent nor invasive, it was been demonstrated that adult ASF mice colonized with E. coli LF82 develop more severe DSS-induced colitis compared to control ASF mice treated with DSS. Therefore, we hypothesized that E. coli LF82 colonization of neonatal ASF mice would reduce the severity of DSS-induced inflammation compared to adult ASF mice colonized with E. coli LF82. To test this hypothesis, adult ASF mice were colonized with E. coli LF82 and bred to produce offspring (LF82N) that were vertically colonized with LF82. LF82N and adult-colonized (LF82A) mice were given 2.0% DSS in drinking water for seven days to trigger colitis. More severe inflammatory lesions were observed in the LF82N + DSS mice when compared to LF82A + DSS mice, and were characterized as transmural in most of the LF82N + DSS mice. Colitis was accompanied by secretion of proinflammatory cytokines (IFNγ, IL-17) and specific mRNA transcripts within the colonic mucosa. Using 16S rRNA gene amplicon sequencing, LF82 colonization did not induce significant changes in the ASF community; however, minimal changes in spatial redistribution by fluorescent in situ hybridization were observed. These results suggest that the age at which mice were colonized with E. coli LF82 pathobiont differentially impacted severity of subsequent colitic events.


Assuntos
Colite , Escherichia coli , Animais , Animais Recém-Nascidos , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/toxicidade , Hibridização in Situ Fluorescente , Mucosa Intestinal/patologia , Camundongos , RNA Ribossômico 16S
19.
mSystems ; 7(5): e0029322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35968975

RESUMO

Animals colonized with a defined microbiota represent useful experimental systems to investigate microbiome function. The altered Schaedler flora (ASF) represents a consortium of eight murine bacterial species that have been used for more than 4 decades where the study of mice with a reduced microbiota is desired. In contrast to germ-free mice, or mice colonized with only one or two species, ASF mice show the normal gut structure and immune system development. To further expand the utility of the ASF, we have developed technical and bioinformatic resources to enable a systems-based analysis of microbiome function using this model. Here, we highlighted four distinct applications of these resources that enable and improve (i) measurements of the abundance of each ASF member by quantitative PCR; (ii) exploration and comparative analysis of ASF genomes and the metabolic pathways they encode that comprise the entire gut microbiome; (iii) global transcriptional profiling to identify genes whose expression responds to environmental changes within the gut; and (iv) discovery of genetic changes resulting from the evolutionary adaptation of the microbiota. These resources were designed to be accessible to a broad community of researchers that, in combination with conventionally-reared mice (i.e., with complex microbiome), should contribute to our understanding of microbiome structure and function. IMPORTANCE Improved experimental systems are needed to advance our understanding of how the gut microbiome influences processes of the mammalian host as well as microbial community structure and function. An approach that is receiving considerable attention is the use of animal models that harbor a stable microbiota of known composition, i.e., defined microbiota, which enables control over an otherwise highly complex and variable feature of mammalian biology. The altered Schaedler flora (ASF) consortium is a well-established defined microbiota model, where mice are stably colonized with 8 distinct murine bacterial species. To take better advantage of the ASF, we established new experimental and bioinformatics resources for researchers to make better use of this model as an experimental system to study microbiome function.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbiota/genética , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Bactérias/genética , Reação em Cadeia da Polimerase , Mamíferos/genética
20.
Microbiol Spectr ; 10(2): e0007322, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35323033

RESUMO

Gastrointestinal illnesses and dysbiosis are among the most common comorbidities reported in patients with neurodevelopmental disorders. The manuscript reports that C. difficile infection (CDI), predisposed by antibiotic-induced gut dysbiosis, causes significant alterations in dopamine metabolism in major dopaminergic brain regions in mice (P < 0.05). In addition, C. difficile infected mice exhibited significantly reduced dopamine beta-hydroxylase (DBH) activity compared to controls (P < 0.01). Moreover, a significantly increased serum concentration of p-cresol, a DBH inhibiting gut metabolite produced by C. difficile, was also observed in C. difficile infected mice (P < 0.05). Therefore, this study suggests a potential mechanistic link between CDI and alterations in the brain dopaminergic axis. Such alterations may plausibly influence the precipitation and aggravation of dopamine dysmetabolism-associated neurologic diseases in infected patients. IMPORTANCE The gut-brain axis is thought to play a significant role in the development and manifestation of neurologic diseases. This study reports significant alterations in the brain dopamine metabolism in mice infected with C. difficile, an important pathogen that overgrows in the gut after prolonged antibiotic therapy. Such alterations in specific brain regions may have an effect on the precipitation or manifestation of neurodevelopmental disorders in humans.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Antibacterianos , Encéfalo , Dopamina , Disbiose , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa