Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO Rep ; 21(10): e50197, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32761777

RESUMO

Progranulin (PGRN) and transmembrane protein 106B (TMEM106B) are important lysosomal proteins implicated in frontotemporal lobar degeneration (FTLD) and other neurodegenerative disorders. Loss-of-function mutations in progranulin (GRN) are a common cause of FTLD, while TMEM106B variants have been shown to act as disease modifiers in FTLD. Overexpression of TMEM106B leads to lysosomal dysfunction, while loss of Tmem106b ameliorates lysosomal and FTLD-related pathologies in young Grn-/- mice, suggesting that lowering TMEM106B might be an attractive strategy for therapeutic treatment of FTLD-GRN. Here, we generate and characterize older Tmem106b-/- Grn-/- double knockout mice, which unexpectedly show severe motor deficits and spinal cord motor neuron and myelin loss, leading to paralysis and premature death at 11-12 months. Compared to Grn-/- , Tmem106b-/- Grn-/- mice have exacerbated FTLD-related pathologies, including microgliosis, astrogliosis, ubiquitin, and phospho-Tdp43 inclusions, as well as worsening of lysosomal and autophagic deficits. Our findings confirm a functional interaction between Tmem106b and Pgrn and underscore the need to rethink whether modulating TMEM106B levels is a viable therapeutic strategy.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Animais , Degeneração Lobar Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana , Camundongos , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso , Progranulinas/genética
2.
Brain ; 143(6): 1905-1919, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32504082

RESUMO

Genetic variants that define two distinct haplotypes at the TMEM106B locus have been implicated in multiple neurodegenerative diseases and in healthy brain ageing. In frontotemporal dementia (FTD), the high expressing TMEM106B risk haplotype was shown to increase susceptibility for FTD with TDP-43 inclusions (FTD-TDP) and to modify disease penetrance in progranulin mutation carriers (FTD-GRN). To elucidate the biological function of TMEM106B and determine whether lowering TMEM106B may be a viable therapeutic strategy, we performed brain transcriptomic analyses in 8-month-old animals from our recently developed Tmem106b-/- mouse model. We included 10 Tmem106b+/+ (wild-type), 10 Tmem106b+/- and 10 Tmem106-/- mice. The most differentially expressed genes (153 downregulated and 60 upregulated) were identified between Tmem106b-/- and wild-type animals, with an enrichment for genes implicated in myelination-related cellular processes including axon ensheathment and oligodendrocyte differentiation. Co-expression analysis also revealed that the most downregulated group of correlated genes was enriched for myelination-related processes. We further detected a significant loss of OLIG2-positive cells in the corpus callosum of Tmem106b-/- mice, which was present already in young animals (21 days) and persisted until old age (23 months), without worsening. Quantitative polymerase chain reaction revealed a reduction of differentiated but not undifferentiated oligodendrocytes cellular markers. While no obvious changes in myelin were observed at the ultrastructure levels in unchallenged animals, treatment with cuprizone revealed that Tmem106b-/- mice are more susceptible to cuprizone-induced demyelination and have a reduced capacity to remyelinate, a finding which we were able to replicate in a newly generated Tmem106b CRISPR/cas9 knock-out mouse model. Finally, using a TMEM106B HeLa knock-out cell line and primary cultured oligodendrocytes, we determined that loss of TMEM106B leads to abnormalities in the distribution of lysosomes and PLP1. Together these findings reveal an important function for TMEM106B in myelination with possible consequences for therapeutic strategies aimed at lowering TMEM106B levels.


Assuntos
Demência Frontotemporal/genética , Demência Frontotemporal/terapia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Expressão Gênica/genética , Haplótipos , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Fibras Nervosas Mielinizadas/patologia , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
3.
Hum Mol Genet ; 24(21): 6198-212, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26276810

RESUMO

Aberrant tau protein accumulation drives neurofibrillary tangle (NFT) formation in several neurodegenerative diseases. Currently, efforts to elucidate pathogenic mechanisms and assess the efficacy of therapeutic targets are limited by constraints of existing models of tauopathy. In order to generate a more versatile mouse model of tauopathy, somatic brain transgenesis was utilized to deliver adeno-associated virus serotype 1 (AAV1) encoding human mutant P301L-tau compared with GFP control. At 6 months of age, we observed widespread human tau expression with concomitant accumulation of hyperphosphorylated and abnormally folded proteinase K resistant tau. However, no overt neuronal loss was observed, though significant abnormalities were noted in the postsynaptic scaffolding protein PSD95. Neurofibrillary pathology was also detected with Gallyas silver stain and Thioflavin-S, and electron microscopy revealed the deposition of closely packed filaments. In addition to classic markers of tauopathy, significant neuroinflammation and extensive gliosis were detected in AAV1-Tau(P301L) mice. This model also recapitulates the behavioral phenotype characteristic of mouse models of tauopathy, including abnormalities in exploration, anxiety, and learning and memory. These findings indicate that biochemical and neuropathological hallmarks of tauopathies are accurately conserved and are independent of cell death in this novel AAV-based model of tauopathy, which offers exceptional versatility and speed in comparison with existing transgenic models. Therefore, we anticipate this approach will facilitate the identification and validation of genetic modifiers of disease, as well as accelerate preclinical assessment of potential therapeutic targets.


Assuntos
Encéfalo/ultraestrutura , Modelos Animais de Doenças , Tauopatias , Proteínas tau/metabolismo , Animais , Comportamento Animal , Morte Celular , Humanos , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/diagnóstico por imagem , Neurônios/patologia , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Ultrassonografia , Proteínas tau/genética
4.
Biomedicines ; 11(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37893236

RESUMO

Lewy body dementia (LBD) is an often misdiagnosed and mistreated neurodegenerative disorder clinically characterized by the emergence of neuropsychiatric symptoms followed by motor impairment. LBD falls within an undefined range between Alzheimer's disease (AD) and Parkinson's disease (PD) due to the potential pathogenic synergistic effects of tau, beta-amyloid (Aß), and alpha-synuclein (αsyn). A lack of reliable and relevant animal models hinders the elucidation of the molecular characteristics and phenotypic consequences of these interactions. Here, the goal was to evaluate whether the viral-mediated overexpression of αsyn in adult hTau and APP/PS1 mice or the overexpression of tau in Line 61 hThy1-αsyn mice resulted in pathology and behavior resembling LBD. The transgenes were injected intravenously via the tail vein using AAV-PHP.eB in 3-month-old hThy1-αsyn, hTau, or APP/PS1 mice that were then aged to 6-, 9-, and 12-months-old for subsequent phenotypic and histological characterization. Although we achieved the widespread expression of αsyn in hTau and tau in hThy1-αsyn mice, no αsyn pathology in hTau mice and only mild tau pathology in hThy1-αsyn mice was observed. Additionally, cognitive, motor, and limbic behavior phenotypes were not affected by overexpression of the transgenes. Furthermore, our APP/PS1 mice experienced premature deaths starting at 3 months post-injection (MPI), therefore precluding further analyses at later time points. An evaluation of the remaining 3-MPI indicated no αsyn pathology or cognitive and motor behavioral changes. Taken together, we conclude that the overexpression of αsyn in hTau and APP/PS1 mice and tau in hThy1-αsyn mice does not recapitulate the behavioral and neuropathological phenotypes observed in LBD.

5.
Brain Pathol ; 31(3): e12945, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33709463

RESUMO

TMEM106B has been recently implicated in multiple neurodegenerative diseases. Here, Rademakers et al. report a late-onset cerebellar Purkinje cell loss and progressive decline in motor function and gait deficits in a conventional Tmem106b-/- mouse model. By using high-power microscopy and bulk RNA sequencing, the authors further identify lysosomal and immune dysfunction as potential underlying mechanisms of the Purkinje cell loss.


Assuntos
Células de Purkinje , Animais , Modelos Animais de Doenças , Camundongos
6.
Acta Neuropathol Commun ; 8(1): 210, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261653

RESUMO

The molecular chaperone Clusterin (CLU) impacts the amyloid pathway in Alzheimer's disease (AD) but its role in tau pathology is unknown. We observed CLU co-localization with tau aggregates in AD and primary tauopathies and CLU levels were upregulated in response to tau accumulation. To further elucidate the effect of CLU on tau pathology, we utilized a gene delivery approach in CLU knock-out (CLU KO) mice to drive expression of tau bearing the P301L mutation. We found that loss of CLU was associated with exacerbated tau pathology and anxiety-like behaviors in our mouse model of tauopathy. Additionally, we found that CLU dramatically inhibited tau fibrilization using an in vitro assay. Together, these results demonstrate that CLU plays a major role in both amyloid and tau pathologies in AD.


Assuntos
Clusterina/genética , Clusterina/metabolismo , Agregação Patológica de Proteínas/genética , Tauopatias/genética , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Ansiedade/fisiopatologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Doença de Pick/genética , Doença de Pick/metabolismo , Doença de Pick/patologia , Doença de Pick/fisiopatologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/fisiopatologia , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/fisiopatologia
7.
Acta Neuropathol Commun ; 7(1): 10, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674342

RESUMO

Pathogenic mutations in the tau gene (microtubule associated protein tau, MAPT) are linked to the onset of tauopathy, but the A152T variant is unique in acting as a risk factor for a range of disorders including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and dementia with Lewy bodies (DLB). In order to provide insight into the mechanism by which A152T modulates disease risk, we developed a novel mouse model utilizing somatic brain transgenesis with adeno-associated virus (AAV) to drive tau expression in vivo, and validated the model by confirming the distinct biochemical features of A152T tau in postmortem brain tissue from human carriers. Specifically, TauA152T-AAV mice exhibited increased tau phosphorylation that unlike animals expressing the pathogenic P301L mutation remained localized to the soluble fraction. To investigate the possibility that the A152T variant might alter the phosphorylation state of tau on T152 or the neighboring T153 residue, we generated a novel antibody that revealed significant accumulation of soluble tau species that were hyperphosphorylated on T153 (pT153) in TauA152T-AAV mice, which were absent the soluble fraction of TauP301L-AAV mice. Providing new insight into the role of A152T in modifying risk of tauopathy, as well as validating the TauA152T-AAV model, we demonstrate that the presence of soluble pT153-positive tau species in human postmortem brain tissue differentiates A152T carriers from noncarriers, independent of disease classification. These results implicate both phosphorylation of T153 and an altered solubility profile in the mechanism by which A152T modulates disease risk.


Assuntos
Encéfalo/metabolismo , Predisposição Genética para Doença , Doenças Neurodegenerativas/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Gliose/patologia , Humanos , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Fosforilação , Proteínas tau/genética
8.
Acta Neuropathol Commun ; 6(1): 42, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855382

RESUMO

Loss-of-function mutations in progranulin (GRN) and a non-coding (GGGGCC)n hexanucleotide repeat expansions in C9ORF72 are the two most common genetic causes of frontotemporal lobar degeneration with aggregates of TAR DNA binding protein 43 (FTLD-TDP). TMEM106B encodes a type II transmembrane protein with unknown function. Genetic variants in TMEM106B associated with reduced TMEM106B levels have been identified as disease modifiers in individuals with GRN mutations and C9ORF72 expansions. Recently, loss of Tmem106b has been reported to protect the FTLD-like phenotypes in Grn-/- mice. Here, we generated Tmem106b-/- mice and examined whether loss of Tmem106b could rescue FTLD-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity. Our results showed that neither partial nor complete loss of Tmem106b was able to rescue behavioral deficits induced by the expression of (GGGGCC)66 repeats (66R). Loss of Tmem106b also failed to ameliorate 66R-induced RNA foci, dipeptide repeat protein formation and pTDP-43 pathological burden. We further found that complete loss of Tmem106b increased astrogliosis, even in the absence of 66R, and failed to rescue 66R-induced neuronal cell loss, whereas partial loss of Tmem106b significantly rescued the neuronal cell loss but not neuroinflammation induced by 66R. Finally, we showed that overexpression of 66R did not alter expression of Tmem106b and other lysosomal genes in vivo, and subsequent analyses in vitro found that transiently knocking down C9ORF72, but not overexpression of 66R, significantly increased TMEM106B and other lysosomal proteins. In summary, reducing Tmem106b levels failed to rescue FTLD-like phenotypes in a mouse model mimicking the toxic gain-of-functions associated with overexpression of 66R. Combined with the observation that loss of C9ORF72 and not 66R overexpression was associated with increased levels of TMEM106B, this work suggests that the protective TMEM106B haplotype may exert its effect in expansion carriers by counteracting lysosomal dysfunction resulting from a loss of C9ORF72.


Assuntos
Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/terapia , Regulação da Expressão Gênica/genética , Proteínas de Membrana/deficiência , Proteínas Supressoras de Tumor/deficiência , Animais , Proteína C9orf72/metabolismo , Linhagem Celular Transformada , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Comportamento Exploratório , Medo/psicologia , Degeneração Lobar Frontotemporal/psicologia , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glicerofosfatos , Humanos , Relações Interpessoais , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução Genética , Proteínas Supressoras de Tumor/genética
9.
Acta Neuropathol Commun ; 5(1): 51, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645308

RESUMO

Abnormal accumulation of alpha-synuclein (αsyn) is a pathological hallmark of Lewy body related disorders such as Parkinson's disease and Dementia with Lewy body disease. During the past two decades, a myriad of animal models have been developed to mimic pathological features of synucleinopathies by over-expressing human αsyn. Although different strategies have been used, most models have little or no reliable and predictive phenotype. Novel animal models are a valuable tool for understanding neuronal pathology and to facilitate development of new therapeutics for these diseases. Here, we report the development and characterization of a novel model in which mice rapidly express wild-type αsyn via somatic brain transgenesis mediated by adeno-associated virus (AAV). At 1, 3, and 6 months of age following intracerebroventricular (ICV) injection, mice were subjected to a battery of behavioral tests followed by pathological analyses of the brains. Remarkably, significant levels of αsyn expression are detected throughout the brain as early as 1 month old, including olfactory bulb, hippocampus, thalamic regions and midbrain. Immunostaining with a phospho-αsyn (pS129) specific antibody reveals abundant pS129 expression in specific regions. Also, pathologic αsyn is detected using the disease specific antibody 5G4. However, this model did not recapitulate behavioral phenotypes characteristic of rodent models of synucleinopathies. In fact no deficits in motor function or cognition were observed at 3 or 6 months of age. Taken together, these findings show that transduction of neonatal mouse with AAV-αsyn can successfully lead to rapid, whole brain transduction of wild-type human αsyn, but increased levels of wildtype αsyn do not induce behavior changes at an early time point (6 months), despite pathological changes in several neurons populations as early as 1 month.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Modelos Animais de Doenças , alfa-Sinucleína/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Dependovirus/genética , Vetores Genéticos , Gliose/metabolismo , Gliose/patologia , Células HEK293 , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Atividade Motora/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , alfa-Sinucleína/genética
10.
Sci Transl Med ; 9(383)2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356511

RESUMO

There is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating motor neuron disease. However, discovery of a G4C2 repeat expansion in the C9ORF72 gene as the most common genetic cause of ALS has opened up new avenues for therapeutic intervention for this form of ALS. G4C2 repeat expansion RNAs and proteins of repeating dipeptides synthesized from these transcripts are believed to play a key role in C9ORF72-associated ALS (c9ALS). Therapeutics that target G4C2 RNA, such as antisense oligonucleotides (ASOs) and small molecules, are thus being actively investigated. A limitation in moving such treatments from bench to bedside is a lack of pharmacodynamic markers for use in clinical trials. We explored whether poly(GP) proteins translated from G4C2 RNA could serve such a purpose. Poly(GP) proteins were detected in cerebrospinal fluid (CSF) and in peripheral blood mononuclear cells from c9ALS patients and, notably, from asymptomatic C9ORF72 mutation carriers. Moreover, CSF poly(GP) proteins remained relatively constant over time, boding well for their use in gauging biochemical responses to potential treatments. Treating c9ALS patient cells or a mouse model of c9ALS with ASOs that target G4C2 RNA resulted in decreased intracellular and extracellular poly(GP) proteins. This decrease paralleled reductions in G4C2 RNA and downstream G4C2 RNA-mediated events. These findings indicate that tracking poly(GP) proteins in CSF could provide a means to assess target engagement of G4C2 RNA-based therapies in symptomatic C9ORF72 repeat expansion carriers and presymptomatic individuals who are expected to benefit from early therapeutic intervention.


Assuntos
Esclerose Lateral Amiotrófica/genética , Biomarcadores/metabolismo , Proteína C9orf72/genética , Repetições de Dinucleotídeos/genética , Adulto , Idoso , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Camundongos , Pessoa de Meia-Idade , Neurônios/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Prognóstico , RNA/genética
11.
Infect Control Hosp Epidemiol ; 27(6): 586-92, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16755478

RESUMO

OBJECTIVE: To determine the source of an outbreak of Salmonella javiana infection. DESIGN: Case-control study. PARTICIPANTS: A total of 101 culture-confirmed cases and 540 epidemiologically linked cases were detected between May 26, 2003, and June 16, 2003, in hospital employees, patients, and visitors. Asymptomatic employees who had eaten in the hospital cafeteria between May 30 and June 4, 2003, and had had no gastroenteritis symptoms after May 1, 2003, were chosen as control subjects. SETTING: A 235-bed academic tertiary care children's hospital. RESULTS: Isolates from 100 of 101 culture-confirmed cases had identical pulsed-field gel electrophoresis patterns. A foodhandler with symptoms of gastroenteritis was the presumed index subject. In multivariate analysis, case subjects were more likely than control subjects to have consumed items from the salad bar (adjusted odds ratio [aOR], 5.3; 95% confidence interval [CI], 2.3-12.1) and to have eaten in the cafeteria on May 28 (aOR, 9.4; 95% CI, 1.8-49.5), May 30 (aOR, 3.6; 95% CI, 1.0-12.7), and/or June 3 (aOR, 4.0; 95% CI, 1.4-11.3). CONCLUSIONS: Foodhandlers who worked while they had symptoms of gastroenteritis likely contributed to the propagation of the outbreak. This large outbreak was rapidly controlled through the use of an incident command center.


Assuntos
Surtos de Doenças , Transmissão de Doença Infecciosa , Gastroenterite/microbiologia , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/transmissão , Estudos de Casos e Controles , Manipulação de Alimentos , Microbiologia de Alimentos , Gastroenterite/epidemiologia , Hospitais Pediátricos/estatística & dados numéricos , Humanos , Controle de Infecções , Missouri
12.
Neurobiol Aging ; 35(7): 1769-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24503275

RESUMO

Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is a neurodegenerative tauopathy caused by mutations in the tau gene (MAPT). Individuals with FTDP-17 have deficits in learning, memory, and language, in addition to personality and behavioral changes that are often characterized by a lack of social inhibition. Several transgenic mouse models expressing tau mutations have been tested extensively for memory or motor impairments, though reports of amygdala-dependent behaviors are lacking. To this end, we tested the rTg4510 mouse model on a behavioral battery that included amygdala-dependent tasks of exploration. As expected, rTg4510 mice exhibit profound impairments in hippocampal-dependent learning and memory tests, including contextual fear conditioning. However, rTg4510 mice also display an abnormal hyperexploratory phenotype in the open-field assay, elevated plus maze, light-dark exploration, and cued fear conditioning, indicative of amygdala dysfunction. Furthermore, significant tau burden is detected in the amygdala of both rTg4510 mice and human FTDP-17 patients, suggesting that the rTg4510 mouse model recapitulates the behavioral disturbances and neurodegeneration of the amygdala characteristic of FTDP-17.


Assuntos
Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Demência Frontotemporal/genética , Demência Frontotemporal/fisiopatologia , Mutação/genética , Degeneração Neural , Proteínas tau/genética , Animais , Comportamento Animal , Condicionamento Psicológico , Modelos Animais de Doenças , Comportamento Exploratório , Medo , Demência Frontotemporal/patologia , Demência Frontotemporal/psicologia , Humanos , Idioma , Aprendizagem , Memória , Camundongos , Camundongos Transgênicos , Índice de Gravidade de Doença
13.
J Alzheimers Dis ; 19(1): 97-109, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20061629

RESUMO

The clinical hallmark of Alzheimer's disease (AD) is impairment of cognition associated with loss of synapses, accumulation of amyloid-beta (Abeta) both within neurons and as extracellular deposits, and neurofibrillary degeneration composed of phospho-tau. Neurons in the hippocampus are among those that are most vulnerable. The purpose of this study was to investigate the expression of genes associated with cognition, synapse, and mitochondrial function in hippocampal neurons of AD compared to normal individuals. Neurons from the hippocampus with intraneuronal Abeta immunoreactivity were captured with laser microdissection; RNA was extracted; and levels of brain-derived neurotrophic factor (BDNF), TrkB (BDNF receptor), dynamin-1 (DYN), and cytochrome C oxidase subunit II (COX2) were assessed with quantitative real-time polymerase chain reaction. We found no significant differences in the expression of these genes in AD between neurons associated with Abeta compared to those lacking Abeta immunoreactivity. Double immunofluorescence microscopy showed the number of hippocampal neurons coexpressing Abeta or phospho-tau and either BDNF, TrkB, or DYN was similar in AD and controls. Our results suggest that neither intraneuronal Abeta nor phospho-tau has obligatory effects on reducing the expression of genes important for memory and cognition in hippocampus of AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Regulação da Expressão Gênica , Líquido Intracelular/metabolismo , Neurônios/metabolismo , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/biossíntese , Cognição/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Estudos Longitudinais , Proteínas Mitocondriais/genética , Neurônios/patologia , Estudos Prospectivos , Sinapses/genética , Proteínas tau/biossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa