Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Br J Haematol ; 197(1): 63-70, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35174480

RESUMO

We investigated the incidence of invasive fungal infections (IFIs) and other infectious complications in patients receiving venetoclax and hypomethylating agent therapy for acute myeloid leukaemia (AML). This retrospective, multicentre cohort study included adult patients with AML who received at least one cycle of venetoclax and either azacitidine or decitabine between January 2016 and August 2020. The primary outcome was the incidence of probable or confirmed IFI. Secondary outcomes included antifungal prophylaxis prescribing patterns, incidence of bacterial infections, and incidence of neutropenic fever hospital admissions. Among 235 patients, the incidence of probable or confirmed IFI was 5.1%. IFI incidence did not differ significantly according to age, antifungal prophylaxis use, or disease status. In the subgroup of patients with probable or confirmed IFIs, six (50%) were receiving antifungal prophylaxis at the time of infection. The overall incidence of developing at least one bacterial infection was 33.6% and 127 (54%) patients had at least one hospital admission for febrile neutropenia. This study demonstrated an overall low risk of developing probable or confirmed IFI as well as a notable percentage of documented bacterial infections and hospital admissions due to neutropenic fever.


Assuntos
Infecções Fúngicas Invasivas , Leucemia Mieloide Aguda , Adulto , Antifúngicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes , Estudos de Coortes , Humanos , Infecções Fúngicas Invasivas/epidemiologia , Leucemia Mieloide Aguda/complicações , Estudos Retrospectivos , Sulfonamidas
2.
J Biol Chem ; 290(9): 5566-81, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25468909

RESUMO

Obesity is associated with increased breast cancer (BrCA) incidence. Considering that inactivation of estrogen receptor (ER)α promotes obesity and metabolic dysfunction in women and female mice, understanding the mechanisms and tissue-specific sites of ERα action to combat metabolic-related disease, including BrCA, is of clinical importance. To study the role of ERα in adipose tissue we generated fat-specific ERα knock-out (FERKO) mice. Herein we show that ERα deletion increased adipocyte size, fat pad weight, and tissue expression and circulating levels of the secreted glycoprotein, lipocalin 2 (Lcn2), an adipokine previously associated with BrCA development. Chromatin immunoprecipitation and luciferase reporter studies showed that ERα binds the Lcn2 promoter to repress its expression. Because adipocytes constitute an important cell type of the breast microenvironment, we examined the impact of adipocyte ERα deletion on cancer cell behavior. Conditioned medium from ERα-null adipocytes and medium containing pure Lcn2 increased proliferation and migration of a subset of BrCA cells in culture. The proliferative and promigratory effects of ERα-deficient adipocyte-conditioned medium on BrCA cells was reversed by Lcn2 deletion. BrCA cell responsiveness to exogenous Lcn2 was heightened in cell types where endogenous Lcn2 expression was minimal, but components of the Lcn2 signaling pathway were enriched, i.e. SLC22A17 and 3-hydroxybutyrate dehydrogenase (BDH2). In breast tumor biopsies from women diagnosed with BrCA we found that BDH2 expression was positively associated with adiposity and circulating Lcn2 levels. Collectively these data suggest that reduction of ERα expression in adipose tissue promotes adiposity and is linked with the progression and severity of BrCA via increased adipocyte-specific Lcn2 production and enhanced tumor cell Lcn2 sensitivity.


Assuntos
Proteínas de Fase Aguda/metabolismo , Tecido Adiposo/metabolismo , Receptor alfa de Estrogênio/metabolismo , Lipocalinas/metabolismo , Obesidade/metabolismo , Proteínas Oncogênicas/metabolismo , Células 3T3-L1 , Proteínas de Fase Aguda/genética , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Receptor alfa de Estrogênio/genética , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Immunoblotting , Lipocalina-2 , Lipocalinas/sangue , Lipocalinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/genética , Proteínas Oncogênicas/sangue , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Sci Transl Med ; 8(334): 334ra54, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27075628

RESUMO

Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A-regulator of calcineurin 1-calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERα deficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERα in the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Homeostase/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteínas de Ligação ao Cálcio , Replicação do DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Dinaminas/metabolismo , Feminino , Deleção de Genes , Glucose/metabolismo , Humanos , Insulina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Springerplus ; 4: 268, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090315

RESUMO

Parathyroid hormone-related protein (PTHrP) inhibits proliferation of several lung cancer cell lines, but the signaling mechanism has not been established. This study tested the hypotheses that growth inhibition is mediated through the PTHrP receptor, PTH1R, and that the process is modified by ERK activation. PTHrP-positive and negative clones of H1944 lung adenocarcinoma cells underwent stable PTH1R knockdown with lentiviral shRNA or transient transfection with ERK1 and ERK2 siRNA. Alternatively, cells were treated with 8-CPT cAMP, 8-CPT 2'-O-methyl cAMP, and N-6-phenyl cAMP analogs. H1944 cells expressing ectopic PTHrP showed 20-40% decrease in proliferation compared to the PTHrP-negative cells in the presence of normal levels of PTH1R (P < 0.01). PTH1R knockdown eliminated this difference and increased cell proliferation regardless of PTHrP status. The three cAMP analogs each inhibited proliferation over 5 days by 30-40%. ERK2 knockdown inhibited proliferation of PTHrP-positive cells alone and in combination with ERK1 knockdown. The growth inhibition mediated by cAMP analogs was unaffected by ERK1 knockdown. In conclusion, ectopic expression of PTHrP 1-87 inhibits H1944 cell proliferation. PTH1R knockdown blocks this effect and stimulates proliferation, indicating that the ligand exerts anti-mitogenic effects. cAMP, the second messenger for PTH1R also inhibits proliferation and activates ERK. PTHrP growth inhibition may be opposed by concomitant ERK activation.

5.
Cell Metab ; 21(2): 334-347, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25651185

RESUMO

Insulin resistance (IR) is a complex trait with multiple genetic and environmental components. Confounded by large differences between the sexes, environment, and disease pathology, the genetic basis of IR has been difficult to dissect. Here we examine IR and related traits in a diverse population of more than 100 unique male and female inbred mouse strains after feeding a diet rich in fat and refined carbohydrates. Our results show dramatic variation in IR among strains of mice and widespread differences between sexes that are dependent on genotype. We uncover more than 15 genome-wide significant loci and validate a gene, Agpat5, associated with IR. We also integrate plasma metabolite levels and global gene expression from liver and adipose tissue to identify metabolite quantitative trait loci (mQTL) and expression QTL (eQTL), respectively. Our results provide a resource for analysis of interactions between diet, sex, and genetic background in IR.


Assuntos
Resistência à Insulina/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Animais , Dieta Hiperlipídica , Carboidratos da Dieta , Feminino , Variação Genética/genética , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
6.
Diabetes ; 63(5): 1488-505, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24379352

RESUMO

Increased heat shock protein (HSP) 72 expression in skeletal muscle prevents obesity and glucose intolerance in mice, although the underlying mechanisms of this observation are largely unresolved. Herein we show that HSP72 is a critical regulator of stress-induced mitochondrial triage signaling since Parkin, an E3 ubiquitin ligase known to regulate mitophagy, was unable to ubiquitinate and control its own protein expression or that of its central target mitofusin (Mfn) in the absence of HSP72. In wild-type cells, we show that HSP72 rapidly translocates to depolarized mitochondria prior to Parkin recruitment and immunoprecipitates with both Parkin and Mfn2 only after specific mitochondrial insult. In HSP72 knockout mice, impaired Parkin action was associated with retention of enlarged, dysmorphic mitochondria and paralleled by reduced muscle respiratory capacity, lipid accumulation, and muscle insulin resistance. Reduced oxygen consumption and impaired insulin action were recapitulated in Parkin-null myotubes, confirming a role for the HSP72-Parkin axis in the regulation of muscle insulin sensitivity. These data suggest that strategies to maintain HSP72 may provide therapeutic benefit to enhance mitochondrial quality and insulin action to ameliorate complications associated with metabolic diseases, including type 2 diabetes.


Assuntos
Proteínas de Choque Térmico HSP72/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Respiração Celular/fisiologia , Células HEK293 , Proteínas de Choque Térmico HSP72/genética , Humanos , Insulina/farmacologia , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa