Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(1): 458-472, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34904664

RESUMO

An embryo starts its life with maternal mRNA clearance, which is crucial for embryonic development. The elimination of maternal transcripts occurs by the joint action of two pathways: the maternally encoded mRNA decay pathway (M-decay) and the zygotic genome activation (ZGA)-dependent pathway (Z-decay). However, zygotic factors triggering maternal mRNA decay in early mammalian embryos remain largely unknown. In this study, we identified the zygotically encoded nuclear poly(A) binding protein 1 (PABPN1) as a factor required for maternal mRNA turnover, with a previously undescribed cytoplasmic function. Cytoplasmic PABPN1 docks on 3'-uridylated transcripts, downstream of terminal uridylyl transferases TUT4 and TUT7, and recruits 3'-5' exoribonuclease DIS3L2 to its targets, facilitating maternal mRNA decay. Pabpn1-knockout in mice resulted in preimplantation stage mortality due to early developmental arrest at the morula stage. Maternal mRNAs to be eliminated via the Z-decay pathway failed to be removed from Pabpn1-depleted embryos. Furthermore, PABPN1-mediated Z-decay is essential for major ZGA and regulates the expression of cell fate-determining factors in mouse preimplantation embryos. This study revealed an unforeseen cytoplasmic function of PABPN1 coupled with early embryonic development, characterized the presence of a zygotic destabilizer of maternal mRNA, and elucidated the Z-decay process mechanisms, which potentially contribute to human fertility.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteína I de Ligação a Poli(A)/metabolismo , RNA Mensageiro/metabolismo , Zigoto/metabolismo , Animais , Embrião de Mamíferos , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos , Estabilidade de RNA
2.
EMBO Rep ; 21(8): e49956, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32558204

RESUMO

Maternal mRNA degradation is a critical event of the maternal-to-zygotic transition (MZT) that determines the developmental potential of early embryos. Nuclear Poly(A)-binding proteins (PABPNs) are extensively involved in mRNA post-transcriptional regulation, but their function in the MZT has not been investigated. In this study, we find that the maternally expressed PABPN1-like (PABPN1L), rather than its ubiquitously expressed homolog PABPN1, acts as an mRNA-binding adapter of the mammalian MZT licensing factor BTG4, which mediates maternal mRNA clearance. Female Pabpn1l null mice produce morphologically normal oocytes but are infertile owing to early developmental arrest of the resultant embryos at the 1- to 2-cell stage. Deletion of Pabpn1l impairs the deadenylation and degradation of a subset of BTG4-targeted maternal mRNAs during the MZT. In addition to recruiting BTG4 to the mRNA 3'-poly(A) tails, PABPN1L is also required for BTG4 protein accumulation in maturing oocytes by protecting BTG4 from SCF-ßTrCP1 E3 ubiquitin ligase-mediated polyubiquitination and degradation. This study highlights a noncanonical cytoplasmic function of nuclear poly(A)-binding protein in mRNA turnover, as well as its physiological importance during the MZT.


Assuntos
RNA Mensageiro Estocado , Zigoto , Animais , Proteínas de Ciclo Celular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Oócitos , Estabilidade de RNA
3.
Cell Mol Life Sci ; 77(11): 2181-2197, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31492966

RESUMO

Cullin ring-finger ubiquitin ligase 4 (CRL4) has multiple functions in the maintenance of oocyte survival and meiotic cell cycle progression. DCAF13, a novel CRL4 adaptor, is essential for oocyte development. But the mechanisms by which CRL4-DCAF13 supports meiotic maturation remained unclear. In this study, we demonstrated that DCAF13 stimulates the meiotic resumption-coupled activation of protein synthesis in oocytes, partially by maintaining the activity of PI3K signaling pathway. CRL4-DCAF13 targets the polyubiquitination and degradation of PTEN, a lipid phosphatase that inhibits PI3K pathway as well as oocyte growth and maturation. Dcaf13 knockout in oocytes caused decreased CDK1 activity and impaired meiotic cell cycle progression and chromosome condensation defects. As a result, chromosomes fail to be aligned at the spindle equatorial plate, the spindle assembly checkpoint is activated, and most Dcaf13 null oocytes are arrested at the prometaphase I. The DCAF13-dependent PTEN degradation mechanism fits in as a missing link between CRL4 ubiquitin E3 ligase and PI3K pathway, both of which are crucial for translational activation during oocyte GV-MII transition.


Assuntos
Meiose , Oócitos/citologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Animais , Células Cultivadas , Feminino , Deleção de Genes , Células HeLa , Humanos , Camundongos , Oócitos/metabolismo , Oócitos/ultraestrutura , Fosfatidilinositol 3-Quinases/metabolismo , Proteólise , Transdução de Sinais
4.
Nat Commun ; 13(1): 6621, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333315

RESUMO

Protein synthesis is an essential step in gene expression during the development of mammalian preimplantation embryos. This is a complex and highly regulated process. The accuracy of the translation initiation codon is important in various gene expression programs. However, the mechanisms that regulate AUG and non-AUG codon initiation in early embryos remain poorly understood. BZW1 is a key factor in determining the mRNA translation start codon. Here, we show that BZW1 is essential for early embryonic development in mice. Bzw1-knockdown embryos fail to undergo compaction, and show decreased blastocyst formation rates. We also observe defects in the differentiation capacity and implantation potential after Bzw1 interference. Further investigation revealed that Bzw1 knockdown causes the levels of translation initiation with CUG as the start codon to increase. The decline in BZW1 levels result in a decrease in protein synthesis in preimplantation embryos, whereas the total mRNA levels are not altered. Therefore, we concluded that BZW1 contributes to protein synthesis during early embryonic development by restricting non-AUG translational initiation.


Assuntos
Blastocisto , Implantação do Embrião , Animais , Camundongos , Códon , Códon de Iniciação , Mamíferos/genética , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , RNA Mensageiro/genética
5.
Sci Adv ; 8(43): eabn9016, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306357

RESUMO

Growing oocytes store a large amount of maternal mRNA to support the subsequent "maternal-zygotic transition" process. At present, it is not clear how the growing oocytes store and process the newly transcribed mRNA under physiological conditions. In this study, we report non-membrane-bound compartments, nuclear poly(A) domains (NPADs), as the hub for newly transcribed mRNA, in developing mouse oocytes. The RNA binding protein PABPN1 promotes the formation of NPAD through its N-terminal disordered domain and RNA-recognized motif by means of liquid phase separation. Pabpn1-null growing oocytes cannot form NPAD normally in vivo and have defects in stability of oocyte growing-related transcripts and formation of long 3' untranslated region isoform transcripts. Ultimately, Pabpn1fl/fl;Gdf9-Cre mice are completely sterile with primary ovarian insufficiency. These results demonstrate that NPAD formed by the phase separation properties of PABPN1-mRNA are the hub of the newly transcribed mRNA and essential for the development of oocytes and female reproduction.


Assuntos
Núcleo Celular , Poli A , Animais , Feminino , Camundongos , Núcleo Celular/metabolismo , Oócitos/metabolismo , Poli A/genética , Poli A/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa