Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591679

RESUMO

The crystallization process of methane hydrates in a confined geometry resembling seabed porous silica sedimentary conditions has been studied using molecular dynamics simulations. With this objective in mind, a fully atomistic quartz silica slit pore has been designed, and the temperature stability of a methane hydrate crystalline seed in the presence of water and guest molecule methane has been analyzed. NaCl ion pairs have been added in different concentrations, simulating salinity conditions up to values higher than average oceanic conditions. The structure obtained when the hydrate crystallizes inside the pore is discussed, paying special attention to the presence of ionic doping inside the hydrate and the subsequent induced structural distortion. The shift in the hydrate stability conditions due to the increasing water salinity is discussed and compared with the case of unconfined hydrate, concluding that the influence of the confinement geometry and pore hydrophilicity produces a larger deviation in the confined hydrate phase equilibria.

2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473969

RESUMO

A theoretical molecular simulation study of the encapsulation of gaseous SO2 at different temperature conditions in a type II porous liquid is presented here. The system is composed of cage cryptophane-111 molecules that are dispersed in dichloromethane, and it is described using an atomistic modelling of molecular dynamics. Gaseous SO2 tended to almost fully occupy cryptophane-111 cavities throughout the simulation. Calculations were performed at 300 K and 283 K, and some insights into the different adsorption found in each case were obtained. Simulations with different system sizes were also studied. An experimental-like approach was also employed by inserting a SO2 bubble in the simulation box. Finally, an evaluation of the radial distribution function of cryptophane-111 and gaseous SO2 was also performed. From the results obtained, the feasibility of a renewable separation and storage method for SO2 using porous liquids is mentioned.


Assuntos
Simulação de Dinâmica Molecular , Compostos Policíclicos , Porosidade
3.
J Chem Phys ; 158(4): 044503, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725512

RESUMO

In the present work, we study the behavior of the noble gases He, Ne, Ar, and Kr inside a hydroquinone clathrate (HQC) by using all-atom molecular dynamics. Larger elements of the same group were not considered due to their inability to fit inside the HQC cavities. By using the umbrella sampling technique, we have obtained the following inter-cage transition barriers-which are arguably the main factor determining the type of diffusion of the gases-at 310 K and 0.1 MPa: 1192; 2204; 6450; 10 730 kJ mol-1 for the guests He, Ne, Ar, and Kr, respectively. These energy barriers were found to have a linear relation with atomic radii (σ). We have tested this tendency with CH4, due to its intermediate size between Ar and Kr, obtaining a barrier of 8926 kJ mol-1, in excellent agreement with the results for noble gases.

4.
Mar Drugs ; 19(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34564153

RESUMO

Rising trends in fish filleting are increasing the amount of processing by-products, such as skins of turbot, a flatfish of high commercial value. In line with circular economy principles, we propose the valorization of turbot skins through a two-step process: initial gelatin extraction described for the first time in turbot, followed by hydrolysis of the remaining solids to produce collagen hydrolysates. We assayed several methods for gelatin extraction, finding differences in gelatin properties depending on chemical treatment and temperature. Of all methods, the application of NaOH, sulfuric, and citric acids at 22 °C results in the highest gel strength (177 g), storage and loss moduli, and gel stability. We found no relation between mechanical properties and content of pyrrolidine amino acids, but the best performing gelatin displays higher structural integrity, with less than 30% of the material below 100 kDa. Collagen hydrolysis was more efficient with papain than alcalase, leading to a greater reduction in Mw of the hydrolysates, which contain a higher proportion of essential amino acids than gelatin and show high in vitro anti-hypertensive activity. These results highlight the suitability of turbot skin by-products as a source of gelatin and the potential of collagen hydrolysates as a functional food and feed ingredient.


Assuntos
Linguados , Gelatina/química , Pele/química , Aminoácidos/análise , Animais , Colágeno/análise , Papaína/química , Alimentos Marinhos , Subtilisinas/química
5.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829985

RESUMO

The expansion of fish filleting, driven by the increasing demand for convenience food, concomitantly generates a rising amount of skinning by-products. Current trends point to a growing share of aquaculture in fish production, so we have chosen three established aquaculture species to study the properties of gelatin extracted from their skin: rainbow trout, commonly filleted; and seabass and seabream, marketed whole until very recently. In the first case, trout skin yields only 1.6% gelatin accompanied by the lowest gel strength (96 g bloom), while yield for the other two species exceeds 6%, and gel strength reaches 181 and 229 g bloom for seabass and seabream, respectively. These results are in line with the proportion of total imino acids analyzed in the gelatin samples. Molecular weight profiling shows similarities among gelatins, but seabass and seabream gelatins appear more structured, with higher proportion of ß-chains and high molecular weight aggregates, which may influence the rheological properties observed. These results present skin by-products of seabream, and to a minor extent seabass, as suitable raw materials to produce gelatin through valorization processes.


Assuntos
Aquicultura , Gelatina/isolamento & purificação , Perciformes , Pele/química , Animais , Bass/metabolismo , Produtos Pesqueiros , Gelatina/química , Oncorhynchus mykiss/metabolismo , Dourada/metabolismo , Alimentos Marinhos
6.
Chemphyschem ; 18(15): 2012-2023, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28474438

RESUMO

Fluorinated ionic liquids (FILs) exhibit complex molecular behavior, where three different nanodomains (polar, hydrogenated nonpolar, and fluorinated nonpolar) have been identified by molecular simulations. Given the high number of possible anion/cation combinations, a theoretical tool able to describe the thermophysical properties of these compounds in a systematic, rapid, and accurate manner is highly desirable. We present here a combined experimental-theoretical methodology to obtain the phase, interface, and transport properties of the 1-alkyl-3-methylimidazolium perfluorobutanesulfonate ([Cn C1 Im][C4 F9 SO3 ]) family. In addition to providing new experimental data, an extended version of the Statistical Associating Fluid Theory (soft-SAFT) is used to describe the physicochemical behavior of the [Cn C1 Im][C4 F9 SO3 ] family. A mesoscopic molecular model is built based on the analysis of the chemical structures of these FILs, and supported by quantum chemical calculations to study the charge distribution of the anion, where only the basic physical features are considered. The resulting molecular parameters are related to the molecular weight, providing the basis for thermophysical predictions of similar compounds. The theory is also able to predict the minimum in the surface tension versus the length of the hydrogenated alkyl chain, experimentally found at n=8. The viscosity parameters are also in agreement with the free-volume calculations obtained from experiments.

7.
Soft Matter ; 12(8): 2264-75, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26822724

RESUMO

The rheological behavior of ethylene glycol-based nanofluids containing exfoliated graphite nanoplatelets has been carried out using a cone-plate Physica MCR rheometer. Initial experiments based on flow curves were carried out, the flow curves were based on the controlled shear stress model, these tests show that the studied nanofluids present non-Newtonian shear thinning behavior with yield stress. Furthermore, linear viscoelastic experiments were conducted in order to determine the viscoelastic behavior: using strain sweep and frequency sweep tests the storage and loss modulus were determined. The fractal dimension (Df) was estimated from the suspension static yield-stress and volume fraction (ϕ) dependence, and was determined to be Df = 2.36, a value consistent with a process of aggregation of RLCA type (reaction limited cluster aggregation). This value is unusual if compared with other nanofluids, and can be regarded as a result of the bidimensionality of the suspended nanoplatelets. Finally, creep-recovery tests and mechanical models confirm the viscoplastic nature of our nanofluids, a feature never shown so far for this type of systems, increasing the solid-like character in the range of concentrations studied if compared with other nanofluids reported in the literature. This is a result of the combination of a remarkable internal structure and strong interactions, which evidence an unexpected behaviour sharing many solid-like features.

8.
Phys Chem Chem Phys ; 18(2): 1114-24, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26660062

RESUMO

The physical characterization of the singular interfacial behavior of heterogeneous fluid systems is a very important step in preliminary stages of the design process, and also in the subsequent procedures for the determination of the optimal operating conditions. Molar isopycnicity or molar density inversion is a special case of phase equilibrium behavior that directly affects the relative position of phases in heterogeneous mixtures, without being affected by gravitational fields. This work is dedicated to characterize the impact of molar density inversion on the interfacial properties of Lennard-Jones binary mixtures. The results and specific trends of the molar density inversion phenomena on the peculiar calculated composition profiles across the interface and interfacial tensions are explored by using canonical molecular dynamics simulations of the Lennard-Jones binary mixtures. Our results show that the density inversion causes drastic changes in the density profiles of the mixtures. In particular, symmetrical and equal-sized Lennard-Jones mixtures always exhibit desorption along the interfacial zone, i.e. the interfacial concentration profiles show a relative minimum at the interface of the total density profiles that increases when the dispersive energy parameter (ε(ij)) between unlike species decreases. However, as the asymmetry of the Lennard-Jones mixtures increases (σ(i) ≠ σ(j)), the concentration profiles display a relative maximum at the interface, which implies the adsorption of the total density profiles along the interfacial zone.

9.
Langmuir ; 31(4): 1283-95, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25580898

RESUMO

In this work, novel and nontoxic fluorinated ionic liquids (FILs) that are totally miscible in water and could be used in biological applications, where fluorocarbon compounds present a handicap because their aqueous solubility (water and biological fluids) is in most cases too low, have been investigated. The self-aggregation behavior of perfluorosulfonate-functionalized ionic liquids in aqueous solutions has been characterized using conductometric titration, isothermal titration calorimetry (ITC), surface tension measurements, dynamic light scattering (DLS), viscosity and density measurements, and transmission electron microscopy (TEM). Aggregation and interfacial parameters have been computed by conductimetry, calorimetry, and surface tension measurements in order to study various thermodynamic and surface properties that demonstrate that the aggregation process is entropy-driven and that the aggregation process is less spontaneous than the adsorption process. The novel perfluorosulfonate-functionalized ILs studied in this work show improved surface activity and aggregation behavior, forming distinct self-assembled structures.

10.
Phys Chem Chem Phys ; 17(10): 6963-75, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25679347

RESUMO

CO2 and CH4 clathrate hydrates of type I were studied by means of DFT and QTAIM, in order to better understand their properties at the molecular level. Sub-cells of type I hydrates were modeled as independent rigid cages, both empty and containing guest molecules. Interaction potentials of guest molecules inside each cage, and moving from a cell to the adjacent one, were calculated using the DFT approximation B3LYP/6-311+g(d,p), considering the cases with and without long range Coulombic corrections. The selected theory level was validated by comparison of the simulated Raman spectra with the experimental ones, for the case of type I lattice at full occupation of CO2 and CH4, respectively. For this comparison, Fermi resonances of CO2 were taken into account by transforming experimental bands to the corresponding theoretical non-mixed states. On the one hand, our results confirm the validity of the theory level selected for the model. We have shown the high anisotropy of the guest-cell interaction potential of the molecules analyzed, which has implications in the formulation and use of equations of state, and in the study of transport properties as well. On the other hand, our results suggest that the concentration of guest species inside type I hydrates could be computed from the comparison of experimental and predicted Raman spectra, although there are non-trivial experimental limitations to get over for that purpose.

11.
J Chem Phys ; 141(1): 014503, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25005295

RESUMO

This work focuses on the application of a two-way approach, where Molecular Dynamics (MD) simulations and the Square Gradient Theory (SGT) have been used for describing the phase and interface behavior of binary and ternary Lennard-Jones (LJ) mixtures, along a condition of three-phase equilibrium. The unequivocal correspondence between MD and SGT has been achieved by using the global phase diagram of binary mixtures composed by equally sized Lennard-Jones molecules, from which representative molecular parameters for Type-I, Type-II, and Type-III systems have been determined. The so selected binaries have been used then to scale the behavior of a ternary mixture characterized by complex phase equilibrium patterns. For the case of the theoretical SGT approach applied to the Lennard-Jones equation of state was used for predicting phase equilibrium and interfacial properties. In addition the corresponding MD simulations of these macroscopic properties have been conducted for the LJ potential by using equivalent molecular parameters and conditions than in the theoretical approach. Excellent agreement has been observed between the predictions obtained from theory and simulations. Particularly, our results concerning the characterization of the three phase line of a binary Type-III mixture indicate that the bulk liquid (α) and the bulk gas (G) regions are sharply separated by a bulk liquid region (ß) for all the explored temperature, pressure, and concentration conditions. The structural analysis of these bulk phases reveals that a secondary liquid phase (ß) perfectly wets the liquid-gas interface (α-G), as previously found for Type-II mixture [A. Mejía and L. F. Vega, J. Chem. Phys. 124, 244505 (2006)]. The exploration along the three-phase line for the ternary mixture shows good agreement between SGT and MD. Particularly, we observed the specific influence of a third component in the phase and interface behavior. From all the previous results, we conclude that the SGT applied to an EoS with appropriate mixing rules produces reliable predictions of the properties of ternary mixtures.

12.
J Phys Chem B ; 128(15): 3764-3774, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38576228

RESUMO

Sequestration of acid gas in geological formations is a disposal method with potential economic and environmental benefits. The process is governed by variables such as gas-water interfacial tension, wetting transition, and gas adsorption into water, among other things. However, the influence of the pressure and temperature on these parameters is poorly understood. This study investigates these parameters using coarse-grained molecular dynamics (CG-MD) simulations and density gradient theory (DGT). Simulations were carried out at 313.15 K and a pressure range of 0-15 MPa. A comparison was made against H2S-water systems to clarify the effects of adsorption on interfacial tension due to vapor-liquid-liquid equilibrium. The predicted H2S-water interfacial tension and phase densities by CG-MD and DGT matched the experimental values well. The adsorption can be quantified via the Gibbs Adsorption function Γ12, which correlated well with the three-phase transition. On the one hand, pressure increments below the three-phase transition revealed a significant adsorption of H2S. On the other hand, above the three-phase transition, the Gibbs Adsorption capacity remained constant, which indicated a saturation of H2S at the water surface due to liquid-liquid equilibrium. Finally, H2S behaves markedly differently in wetting transition, rather than the involved for CO2 to different molecular layers beneath the surface of aqueous solutions. In this respect, H2S is represented by a first-order wetting transition while CO2 presents a critical wetting. Finally, it has also been found that the preferential adsorption of H2S over the H2O interface is greater if compared to that of CO2, due to its strong interaction with water. In fact, we have also demonstrated that CO2 under triphasic conditions strongly influences the wetting of the ternary system.

13.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770368

RESUMO

In this study we analyse from a theoretical perspective the encapsulation of both gaseous H2 and CO2 at different conditions of pressure and temperature in a Type II porous liquid, composed by nanometric scale cryptophane-111 molecules dispersed in dichloromethane, using atomistic molecular dynamics. Gaseous H2 tends to occupy cryptophane-111's cavities in the early stages of the simulation; however, a remarkably greater selectivity of CO2 adsorption can be seen in the course of the simulation. Calculations were performed at ambient conditions first, and then varying temperature and pressure, obtaining some insight about the different adsorption found in each case. An evaluation of the host molecule cavities accessible volume was also performed, based on the guest that occupies the pore. Finally, a discussion between the different intermolecular host-guest interactions is presented, justifying the different selectivity obtained in the molecular simulation calculations. From the results obtained, the feasibility of a renewable separation and storage method for CO2 using these nanometric scale porous liquids is pointed out.

14.
Nanomaterials (Basel) ; 13(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37177079

RESUMO

Umbrella Sampling Molecular Dynamics has been used to determine transition energies for different guest molecules through hydroquinone ß-clathrate nanochannels, as well as their temperature trend. This clathrate has been shown to successfully enclathrate different types of small gases with remarkable selectivity, and thus it has been proposed as a potential gas separation and storage medium. Most of these potential guest gases can be successfully modeled as single Lennard-Jones spheres. Then, to obtain a general view of diffusion probabilities for different potential guest molecules, a comparative study for different virtual guest molecules described by different Lennard-Jones parameters has been performed. A regular temperature trend has been obtained for the transition energies for the molecular model characteristic parameter range explored. Finally, to locate the transition energy values of real gases within the space of phases explored, calculations have been repeated for molecular models of different noble gases and H2. The correlation results presented allow a wide interpolation ability for determining the transition energies of potential guest molecules stored or diffusing through the nanochannels of the studied clathrate structure.

15.
Glob Chall ; 7(1): 2200107, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618101

RESUMO

The research on porous materials for the selective capture of fluorinated gases (F-gases) is key to reduce their emissions. Here, the adsorption of difluoromethane (R-32), pentafluoroethane (R-125), and 1,1,1,2-tetrafluoroethane (R-134a) is studied in four metal-organic frameworks (MOFs: Cu-benzene-1,3,5-tricarboxylate, zeolitic imidazolate framework-8, MOF-177, and MIL-53(Al)) and in one zeolite (ZSM-5) with the aim to develop technologies for the efficient capture and separation of high global warming potential blends containing these gases. Single-component sorption equilibria of the pure gases are measured at three temperatures (283.15, 303.15, and 323.15 K) by gravimetry and correlated using the Tóth and Virial adsorption models, and selectivities toward R-410A and R-407F are determined by ideal adsorption solution theory. While at lower pressures, R-125 and R-134a are preferentially adsorbed in all materials, at higher pressures there is no selectivity, or it is shifted toward the adsorption R-32. Furthermore, at high pressures, MOF-177 shows the highest adsorption capacity for the three F-gases. The results presented here show that the utilization of MOFs, as tailored made materials, is promising for the development of new approaches for the selective capture of F-gases and for the separation of blends of these gases, which are used in commercial refrigeration.

16.
Gels ; 8(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35448138

RESUMO

The skin of yellowfin tuna is one of the fishery industry solid residues with the greatest potential to add extra value to its circular economy that remains yet unexploited. Particularly, the high collagen content of fish skin allows generating gelatin by hydrolysis, which is ideal for forming hydrogels due to its biocompatibility and gelling capability. Hydrogels have been used as drug carriers for local administration due to their mechanical properties and drug loading capacity. Herein, novel tuna gelatin hydrogels were designed as drug vehicles with two structurally different antitumoral model compounds such as Doxorubicin and Crocin to be administrated locally in tissues with complex human anatomies after surgical resection. The characterization by gel permeation chromatography (GPC) of purified gelatin confirmed their heterogeneity composition, exhibiting three major bands that correspond to the ß and α chains along with high molecular weight species. In addition, the Fourier Transform Infrared (FT-IR) spectra of gelatin probed the secondary structure of the gelatin showing the simultaneous existence of α helix, ß sheet, and random coil structures. Morphological studies at different length scales were performed by a multi-technique approach using SAXS/WAXS, AFM and cryo-SEM that revealed the porous network formed by the interaction of gelatin planar aggregates. In addition, the sol-gel transition, as well as the gelation point and the hydrogel strength, were studied using dynamic rheology and differential scanning calorimetry. Likewise, the loading and release profiles followed by UV-visible spectroscopy indicated that the novel gelatin hydrogels improve the drug release of Doxorubicin and Crocin in a sustained fashion, indicating the structure-function importance in the material composition.

17.
Pharmaceutics ; 14(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35745711

RESUMO

A series of bionanocomposites composed of shark gelatin hydrogels and PLA nanoparticles featuring different nanostructures were designed to generate multifunctional drug delivery systems with tailored release rates required for personalized treatment approaches. The global conception of the systems was considered from the desired customization of the drug release while featuring the viscoelastic properties needed for their ease of storage and posterior local administration as well as their biocompatibility and cell growth capability for the successful administration at the biomolecular level. The hydrogel matrix offers the support to develop a direct thermal method to convert the typical kinetic trapped nanostructures afforded by the formulation method whilst avoiding the detrimental nanoparticle agglomeration that diminishes their therapeutic effect. The nanoparticles generated were successfully formulated with two different antitumoral compounds (doxorubicin and dasatinib) possessing different structures to prove the loading versatility of the drug delivery system. The bionanocomposites were characterized by several techniques (SEM, DLS, RAMAN, DSC, SAXS/WAXS and rheology) as well as their reversible sol-gel transition upon thermal treatment that occurs during the drug delivery system preparation and the thermal annealing step. In addition, the local applicability of the drug delivery system was assessed by the so-called "syringe test" to validate both the storage capability and its flow properties at simulated physiological conditions. Finally, the drug release profiles of the doxorubicin from both the PLA nanoparticles or the bionanocomposites were analyzed and correlated to the nanostructure of the drug delivery system.

18.
Gels ; 8(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36135306

RESUMO

Gelatin is a popular biopolymer for biomedical applications due to its harmless impact with a negligible inflammatory response in the host organism. Gelatin interacts with soluble molecules in aqueous media as ionic counterparts such as ionic liquids (ILs) to be used as cosolvents to generate the so-called Ionogels. The perfluorinated IL (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate, has been selected as co-hydrosolvent for fish gelatin due to its low cytotoxicity and hydrophobicity aprotic polar structure to improve the drug aqueous solubility. A series of FIL/water emulsions with different FIL content and their corresponding shark gelatin/FIL Ionogel has been designed to enhance the drug solubility whilst retaining the mechanical structure and their nanostructure was probed by simultaneous SAXS/WAXS, FTIR and Raman spectroscopy, DSC and rheological experiments. Likewise, the FIL assisted the solubility of the antitumoural Doxorubicin whilst retaining the performing mechanical properties of the drug delivery system network for the drug storage as well as the local administration by a syringe. In addition, the different controlled release mechanisms of two different antitumoral such as Doxorubicin and Mithramycin from two different Ionogels formulations were compared to previous gelatin hydrogels which proved the key structure correlation required to attain specific therapeutic dosages.

19.
Nanomaterials (Basel) ; 11(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671036

RESUMO

In this work, polymeric membranes functionalized with ionic liquids (ILs) and exfoliated graphene nanoplatelets (xGnP) were developed and characterized. These membranes based on graphene ionanofluids (IoNFs) are promising materials for gas separation. The stability of the selected IoNFs in the polymer membranes was determined by thermogravimetric analysis (TGA). The morphology of membranes was characterized using scanning electron microscope (SEM) and interferometric optical profilometry (WLOP). SEM results evidence that upon the small addition of xGnP into the IL-dominated environment, the interaction between IL and xGnP facilitates the migration of xGnP to the surface, while suppressing the interaction between IL and Pebax®1657. Fourier transform infrared spectroscopy (FTIR) was also used to determine the polymer-IoNF interactions and the distribution of the IL in the polymer matrix. Finally, the thermodynamic properties and phase transitions (polymer-IoNF) of these functionalized membranes were studied using differential scanning calorimetry (DSC). This analysis showed a gradual decrease in the melting point of the polyamide (PA6) blocks with a decrease in the corresponding melting enthalpy and a complete disappearance of the crystallinity of the polyether (PEO) phase with increasing IL content. This evidences the high compatibility and good mixing of the polymer and the IoNF.

20.
Polymers (Basel) ; 13(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451367

RESUMO

Salmon processing commonly involves the skinning of fish, generating by-products that need to be handled. Such skin residues may represent valuable raw materials from a valorization perspective, mainly due to their collagen content. With this approach, we propose in the present work the extraction of gelatin from farmed salmon and further valorization of the remaining residue through hydrolysis. Use of different chemical treatments prior to thermal extraction of gelatin results in a consistent yield of around 5%, but considerable differences in rheological properties. As expected from a cold-water species, salmon gelatin produces rather weak gels, ranging from 0 to 98 g Bloom. Nevertheless, the best performing gelatins show considerable structural integrity, assessed by gel permeation chromatography with light scattering detection for the first time on salmon gelatin. Finally, proteolysis of skin residues with Alcalase for 4 h maximizes digestibility and antihypertensive activity of the resulting hydrolysates, accompanied by the sharpest reduction in molecular weight and higher content of essential amino acids. These results indicate the possibility of tuning salmon gelatin properties through changes in chemical treatment conditions, and completing the valorization cycle through production of bioactive and nutritious hydrolysates.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa