Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 27(8): 1577-1587, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30846406

RESUMO

The natural compound 1,4-naphthoquinone has potent anti-tumor activity. However, the clinical application of 1,4-naphthoquinone and its derivatives has been limited by their side effects. In this study, we attempted to reduce the toxicity of 1,4-naphthoquinone by synthesizing two derivatives: 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (EPDMNQ) and 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (ENDMNQ). Then we evaluated the cytotoxicity and molecular mechanisms of these compounds in lung cancer cells. EPDMNQ and ENDMNQ significantly inhibited the viabilities of three lung cancer cell lines and induced A549 cell cycle arrest at the G1 phase. In addition, they induced the apoptosis of A549 lung cancer cells by increasing the phosphorylation of p38 and c-Jun N-terminal kinase (p-JNK), and decreasing the phosphorylation of extracellular signal-related kinase (p-ERK), protein kinase B (Akt), and signal transducer and activator of transcription 3 (STAT3). Furthermore, they increased reactive oxygen species (ROS) levels in A549 cells; however, pretreatment with the ROS inhibitor N-acetyl-l-cysteine significantly inhibited EPDMNQ- and ENDMNQ-mediated apoptosis and reversed apoptotic proteins expression. In conclusion, EPDMNQ and ENDMNQ induced G1 phase cell cycle arrest and apoptosis in A549 cells via the ROS-mediated activation of mitogen activated protein kinase (MAPK), Akt and STAT3 signaling pathways.


Assuntos
Apoptose , Desenho de Fármacos , Naftoquinonas/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Naftoquinonas/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Drug Dev Res ; 80(4): 461-470, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30698296

RESUMO

Isoliquiritigenin (ISL), a natural flavonoid isolated from plant licorice, has various pharmacological properties, including anticancer, anti-inflammatory, and antiviral effects. However, the underlying mechanisms and signaling pathways of ISL in human hepatocellular carcinoma (HCC) cells remain unknown. In this study, we evaluated the effects of ISL on the apoptosis of human HCC cells with a focus on reactive oxygen species (ROS) production. Our results showed that ISL exhibited cytotoxic effects on two human liver cancer cells in a dose-dependent manner. ISL significantly induced mitochondrial-related apoptosis and cell cycle arrest at the G2/M phase, which was accompanied by ROS accumulation in HepG2 cells. However, pretreatment with an ROS scavenger, N-acetyl-l-cysteine (NAC), inhibited ISL-induced apoptosis. In addition, ISL increased the phosphorylation levels of c-Jun N-terminal kinase (JNK), p38 kinase and inhibitor of NF-κB (IκB), and decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappa B (NF-κB), these effects were blocked by NAC and mitogen-activated protein kinase (MAPK) inhibitors. Taken together, the findings of this study indicate that ISL induced HepG2 cell apoptosis via ROS-mediated MAPK, STAT3, and NF-κB signaling pathways. Therefore, ISL may be a potential treatment for human HCC, as well as other cancer types.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Chalconas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo
3.
Med Sci Monit ; 24: 3710-3719, 2018 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-29860266

RESUMO

BACKGROUND Quinalizarin (1,2,5,8-tetrahydroxyanthraquinone) exhibits potentially useful anticancer effects by inducing apoptosis in several types of cancer, but its underlying mechanism of action remains unknown. The present study examined the effects of quinalizarin on the induction of cell cycle arrest, apoptosis, the generation of reactive oxygen species (ROS), other underlying mechanisms, and its role in modifying colorectal cancer cell lines. MATERIAL AND METHODS The MTT assay was used to evaluate the viability of SW480 and HCT-116 cells that had been treated with quinalizarin and 5-fluorouracil (5-FU). Cell cycle arrest and apoptosis were analyzed by flow cytometry. Western blotting was used to investigate the mitochondrial pathway; Akt, MAPK, and STAT3 signaling pathways were also investigated. The relationship between ROS generation and apoptosis was analyzed by flow cytometry and western blotting. RESULTS The results indicated that quinalizarin significantly inhibits the viability of SW480 and HCT-116 cells in a dose-dependent manner. Quinalizarin induced SW480 cell cycle arrest at G2/M by regulating cyclin B1 and CDK1/2. The apoptosis-related protein expression levels of p-p53, Bad, cleaved caspase-3, cleaved PARP and p-JNK were increased in quinalizarin-treated cells, while protein expression levels Bcl-2, p-Akt, p-ERK, and p-STAT3 were decreased. Quinalizarin induced apoptosis in colorectal cancer cells by regulating MAPK and STAT3 signaling pathways via ROS generation. CONCLUSIONS Quinalizarin induces apoptosis via ROS-mediated MAPK/STAT3 signaling pathways.


Assuntos
Antraquinonas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HCT116 , Humanos , Proteína Oncogênica v-akt/efeitos dos fármacos , Proteína Oncogênica v-akt/metabolismo
4.
Drug Dev Res ; 79(6): 295-306, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30222185

RESUMO

Hit, Lead & Candidate Discovery It is reported that 1,4-naphthoquinones and their derivatives have potent antitumor activity in various cancers, although their clinical application is limited by observed side effects. To improve the therapeutic efficacy of naphthoquinones in the treatment of cancer and to reduce side effects, we synthesized a novel naphthoquinone derivative, 2-(naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone (NTDMNQ). In this study, we explored the effects of NTDMNQ on apoptosis in gastric cancer cells with a focus on reactive oxygen species (ROS) production. Our results demonstrated that NTDMNQ exhibited the cytotoxic effects on gastric cancer cells in a dose-dependent manner. NTDMNQ significantly induced mitochondrial-related apoptosis in AGS cells and increased the accumulation of ROS. However, pre-treatment with N-acetyl-L-cysteine (NAC), an ROS scavenger, inhibited the NTDMNQ-induced apoptosis. In addition, NTDMNQ increased the phosphorylation of p38 kinase and c-Jun N-terminal kinase (JNK) and decreased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and Signal Transducer and Activator of Transcription 3 (STAT3); these effects were blocked by mitogen-activated protein kinase (MAPK) inhibitor and NAC. Taken together, the present findings indicate that NTDMNQ-induced gastric cancer cell apoptosis via ROS-mediated regulation of the MAPK, Akt, and STAT3 signaling pathways. Therefore, NTDMNQ may be a potential treatment for gastric cancer as well as other tumor types.


Assuntos
1-Naftilamina/análogos & derivados , Apoptose/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , 1-Naftilamina/administração & dosagem , 1-Naftilamina/efeitos adversos , 1-Naftilamina/síntese química , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
5.
Toxicol In Vitro ; 70: 105052, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33188878

RESUMO

Calycosin is one of the main ingredients extracted from the Chinese medical herb, Radix astragali (RA). It has been shown to inhibit cell proliferation and induce apoptosis in several cancer cell lines, but the underlying mechanism remains unclear. The effects of calycosin on the proliferation and apoptosis of hepatocellular carcinoma (HCC) cells, as well as its mechanism, were investigated in this study. Cell Counting Kit-8 assay results suggested that calycosin had anti-proliferation effects on HCC in dose- and time-dependent manners, and had less cytotoxicity in normal cells. Hoechst/PI double staining and flow cytometry results showed cellular morphological changes and apoptosis after treatment of HepG2 cells with calycosin. The western blot assay showed calycosin decreased the expression of Bcl-2 and increased the expression of Bax, caspase-3, and PARP. Calycosin induced the activation of MAPK, STAT3, NF-κB, apoptosis-related proteins, and induced cell cycle arrest in the G0/G1 phase by regulating AKT. In addition, calycosin reduced the expression of TGF-ß1, SMAD2/3, SLUG, and vimentin. Furthermore, phosphorylation, apoptosis, and cell migration induced by calycosin were mediated by the production of reactive oxygen species. These events could be inhibited by pretreatment with N-acetyl-L-cysteine. Calycosin resisted HCC by activating ROS-mediated MAPK, STAT3, and NF-κB signaling pathways.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Isoflavonas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Naunyn Schmiedebergs Arch Pharmacol ; 393(10): 1987-1999, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31956937

RESUMO

Liquiritin (LIQ), a major constituent of Glycyrrhiza Radix, exhibits various pharmacological activities. In this study, to explore the potential anti-cancer effects and its underlying molecular mechanisms of LIQ in hepatocellular carcinoma (HCC) cells. LIQ significantly decreased viability and induced apoptosis in HepG2 cells by decreasing mitochondrial membrane potential and regulating Bcl-2 family proteins, cytochrome c, cle-caspase-3, and cle-PARP. The cell cycle analysis and western blot analysis revealed that LIQ induced G2/M phase arrest through increased expression of p21 and decreased levels of p27, cyclin B, and CDK1/2. The flow cytometry and western blot analysis also suggested that LIQ promoted the accumulation of ROS in HepG2 cells and up-regulated the phosphorylation expression levels of p38 kinase, c-Jun N-terminal kinase (JNK), and inhibitor of NF-κB (IκB-α); the phosphorylation levels of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), signal transducer activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) were down-regulated. However, these effects were reversed by N-acetyl-L-cysteine (NAC), MAPK, and AKT inhibitors. The findings demonstrated that LIQ induced cell cycle arrest and apoptosis via the ROS-mediated MAPK/AKT/NF-κB signaling pathway in HepG2 cells, and the LIQ may serve as a potential therapeutic agent for the treatment of human HCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Flavanonas/farmacologia , Glucosídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Flavanonas/uso terapêutico , Glucosídeos/uso terapêutico , Glycyrrhiza , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Artif Cells Nanomed Biotechnol ; 48(1): 84-95, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31852250

RESUMO

Cytisine is a natural product isolated from plants and is a member of the quinolizidine alkaloid family. This study aims to investigate the effect of cytisine in human lung cancer. Cell viability was determined using the CCK-8 assay, and the results showed that cytisine inhibited the growth of lung cancer cell lines. The apoptotic effects were evaluated using flow cytometry, and the results showed that cytisine induced mitochondrial-dependent apoptosis through loss of the mitochondrial membrane potential; increased expression of BAD, cleaved caspase-3, and cleaved-PARP; and decreased expression levels of Bcl-2, pro-caspase-3, and pro-PARP. In addition, cytisine caused G2/M phase cell cycle arrest that was associated with inhibiting the AKT signalling pathway. During apoptosis, cytisine increased the phosphorylation levels of JNK, p38, and I-κB, and decreased the phosphorylation levels of ERK, STAT3, and NF-κB. Furthermore, cytisine treatment led to the generation of ROS, and the NAC attenuated cytisine-induced apoptosis. In vivo, cytisine administration significantly inhibited the lung cancer cell xenograft tumorigenesis. In conclusion, cytisine plays a critical role in suppressing the carcinogenesis of lung cancer cells through cell cycle arrest and induction of mitochondria-mediated apoptosis, suggesting that it may be a promising candidate for the treatment of human lung cancer.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Azocinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolizinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Chem Biol Interact ; 304: 148-157, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30871965

RESUMO

1,4-Naphthoquinone compounds are a class of organic compounds derived from naphthalene. They exert a wide variety of biological effects, but when used as anticancer drugs, have varying levels of side effects. In the present study, in order to reduce toxicity and improve the antitumor activity, we synthesized two novel 1,4-naphthoquinone derivatives, 2-(butane-1-sulfinyl)-1,4-naphthoquinone (BSQ) and 2-(octane-1-sulfinyl)-1,4-naphthoquinone (OSQ). We investigated the antitumor effects of BSQ and OSQ in human lung cancer cells and the underlying molecular mechanisms of these effects, focusing on the relationship between these compounds and reactive oxygen species (ROS) production. MTT assay and trypan blue exclusion assay results showed that BSQ and OSQ had significant cytotoxic effects in human lung cancer cells. Flow cytometry results indicated that the number of apoptotic cells and the intracellular ROS levels significantly increased after treatment with BSQ and OSQ. However, cell apoptosis was inhibited by pretreatment with the ROS scavenger N-acetyl-l-cysteine (NAC). Western blotting results showed that BSQ and OSQ increased the expression levels of p-p38 kinase and p-c-Jun N-terminal kinase (p-JNK), and decreased the expression levels of p-extracellular signal-regulated kinase (p-ERK), p-protein kinase B (p-Akt), and p-signal transducer and activator of transcription-3 (p-STAT3). These phenomena were blocked by mitogen-activated protein kinase (MAPK) inhibitors, Akt inhibitors and NAC. In conclusion, BSQ and OSQ induce human lung cancer A549 cell apoptosis by ROS-mediated MAPKs, Akt, and STAT3 signaling pathways. Therefore, BSQ and OSQ may be therapeutic potential agents for the treatment of human lung cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Naftalenos/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Células A549 , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Naftalenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
J Chemother ; 31(4): 214-226, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31074342

RESUMO

The 1,4-naphthoquinones and their derivatives have garnered great interest due to their antitumor pharmacological properties in various cancers; however, their clinical application is limited by side effects. In this study, to reduce side effects and improve therapeutic efficacy, a novel 1,4-naphthoquinone derivative-2-(4-methoxyphenylthio)-5,8-dimethoxy-1,4-naphthoquinone (MPTDMNQ) was synthesized. We investigated the effects and underlying mechanisms of MPTDMNQ on cell viability, apoptosis, and reactive oxygen species (ROS) generation in human gastric cancer cells. Our results showed that MPTDMNQ decreased cell viability in nine human gastric cancer cell lines. MPTDMNQ significantly induced apoptosis accompanied by the accumulation of ROS in GC cells. However, pre-treatment with the ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the MPTDMNQ-induced apoptosis. Moreover, MPTDMNQ decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3); and increased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 kinase. However, phosphorylation was inhibited by NAC and a mitogen-activated protein kinase (MAPK) inhibitor. These findings showed that MPTDMNQ induced AGS cell apoptosis via ROS-mediated MAPK and STAT3 signaling pathways. Thus, MPTDMNQ may be a promising candidate for treating gastric cancer.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Naftoquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo
10.
Mol Med Rep ; 20(3): 2571-2582, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31322207

RESUMO

1,4­Naphthoquinone derivatives have superior anticancer effects, but their use has been severely limited in clinical practice due to adverse side effects. To reduce the side effects and extend the anticancer effects of 1,4­naphthoquinone derivatives, 2­(butane­1­sulfinyl)­1,4­naphthoquinone (BQ) and 2­(octane­1­sulfinyl)­1,4­naphthoquinone (OQ) were synthesized, and their anticancer activities were investigated. The anti­proliferation effects, determined by MTT assays, showed that BQ and OQ significantly inhibited the viability of gastric cancer cells and had no significant cytotoxic effect on normal cell lines. The apoptotic effect was determined by flow cytometry, and the results showed that BQ and OQ induced cell apoptosis by regulating the mitochondrial pathway and cell cycle arrest at the G2/M phase via inhibition of the Akt signaling pathway in AGS cells. Furthermore, BQ and OQ significantly increased the levels of reactive oxygen species (ROS) and this effect was blocked by the ROS scavenger NAC in AGS cells. BQ and OQ induced apoptosis by upregulating the protein expression of p38 and JNK and downregulating the levels of ERK and STAT3. Furthermore, expression levels of these proteins were also blocked after NAC treatment. These results demonstrated that BQ and OQ induced apoptosis and cell cycle arrest at the G2/M phase in AGS cells by stimulating ROS generation, which caused subsequent activation of MAPK, Akt and STAT3 signaling pathways. Thus, BQ and OQ may serve as potential therapeutic agents for the treatment of human gastric cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Naftoquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Naftoquinonas/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
11.
Int J Mol Med ; 43(2): 1067-1075, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30535477

RESUMO

The present study investigated the mechanisms of apoptosis induced by cryptotanshinone (CT) in human rheumatoid arthritis fibroblast­like synoviocytes (RA­FLSs). Cell Counting kit­8 assay was performed to determine the cytotoxic effects of CT in human RA­FLSs, including primary RA­FLS, HFLS­RA and MH7A cells, and in HFLS cells derived from normal synovial tissue. Annexin V­FITC/PI staining was used to detect the apoptotic effects of CT in HFLS­RA and MH7A cells. Flow cytometry was performed to detect the apoptotic and reactive oxygen species (ROS) levels induced by CT in HFLS­RA cells. Western blotting was used to assess the expression levels of proteins associated with apoptosis and with the mitogen­activated protein kinase (MAPK), protein kinase B (Akt), and signal transducer and activator of transcription­3 (STAT3) signaling pathways. The results demonstrated that CT treatment significantly suppressed HFLS­RA and MH7A cell growth, whereas no clear inhibitory effect was observed in normal HFLS cells. CT exposure downregulated the expression levels of B­cell lymphoma 2 (Bcl­2), p­Akt, p­extracellular signal­related kinase and p­STAT3, while it upregulated the expression levels of Bcl­2­associated death promoter (Bad), caspase­3, poly (ADP­ribose) polymerase (PARP), p­p38 and p­c­Jun N­terminal kinase. Following ROS scavenging, the CT­induced apoptosis and altered expression levels of Bcl­2, Bad, cleaved caspase­3 and cleaved PARP were restored. Furthermore, the Akt, MAPK and STAT3 signaling pathways were regulated by intracellular ROS. These results suggest that ROS­mediated Akt, MAPK and STAT3 signaling pathways serve important roles in the CT­induced apoptosis of RA­FLSs.


Assuntos
Apoptose/efeitos dos fármacos , Artrite Reumatoide/metabolismo , Fenantrenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo
12.
Mol Med Rep ; 19(3): 1654-1664, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30592276

RESUMO

Derivatives of 1,4­naphthoquinone have excellent anti­cancer effects, but their use has been greatly limited due to their serious side effects. To develop compounds with decreased side effects and improved anti­cancer activity, two novel types of 1,4­naphthoquinone derivatives, 2,3­dihydro­2,3­epoxy­2­propylsulfonyl­5,8­dimethoxy­1,4­naphthoquinone (EPDMNQ) and 2,3­dihydro­2,3­epoxy­2­nonylsulfonyl­5,8­dimethoxy­1,4­naphthoquinone (ENDMNQ) were synthesized and their anti­tumor activities were investigated. The effects of EPDMNQ and ENDMNQ on cell viability, apoptosis and accumulation of reactive oxygen species (ROS) in liver cancer cells were determined by MTT cell viability assay and flow cytometry. The expression levels of mitochondrial, mitogen activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathway­associated proteins in Hep3B liver cancer cells were analyzed by western blot analysis. The results demonstrated that EPDMNQ and ENDMNQ inhibited the proliferation of liver cancer Hep3B, HepG2, and Huh7 cell lines but not that of normal liver L­02, normal lung IMR­90 and stomach GES­1 cell lines. The number of apoptotic cells and ROS levels were significantly increased following treatment with EPDMNQ and ENDMNQ, and these effects were blocked by the ROS inhibitor N­acetyl­L­cysteine (NAC) in Hep3B cells. EPDMNQ and ENDMNQ induced apoptosis by upregulating the protein expression of p38 MAPK and c­Jun N­terminal kinase and downregulating extracellular signal­regulated kinase and STAT3; these effects were inhibited by NAC. The results of the present study demonstrated that EPDMNQ and ENDMNQ induced apoptosis through ROS­modulated MAPK and STAT3 signaling pathways in Hep3B cells. Therefore, these novel 1,4­naphthoquinone derivatives may be useful as anticancer agents for the treatment of liver cancer.


Assuntos
Neoplasias Hepáticas/tratamento farmacológico , Naftoquinonas/farmacologia , Fator de Transcrição STAT3/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Espécies Reativas de Oxigênio/metabolismo
13.
Int J Biochem Cell Biol ; 96: 9-19, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29326072

RESUMO

1,4-Naphthoquinone and its derivatives have shown some efficacy as therapeutic compounds for cancer and inflammation, though their clinical application is limited by their side-effects. To reduce the toxicity of these compounds and optimize their effects, we synthesized two 1,4-naphthoquinone derivatives-2-butylsulfinyl- 1,4-naphthoquinone (BSNQ) and 2-octylsulfinyl-1,4-naphthoquinone (OSNQ)-and investigated their effects and underlying mechanisms in hepatocellular carcinoma cells. BSNQ and OSNQ decreased cell viability and significantly induced apoptosis, accompanied by the accumulation of reactive oxygen species (ROS). However, pretreatment with N-acetyl-l-cysteine, a specific ROS scavenger, blocked apoptosis. Western blot results indicated that BSNQ and OSNQ up-regulated the phosphorylation of p38 and JNK, and down-regulated the phosphorylation of ERK, Akt and STAT3, and that these effects were blocked by N-acetyl-l-cysteine. Furthermore, BSNQ and OSNQ suppressed tumor growth and modulated MAPK and STAT3 signaling in mouse xenografts without detectable effects on body weight or hematological parameters. These results indicate that BSNQ and OSNQ induce apoptosis in human hepatoma Hep3B cells via ROS-mediated p38/MAPK, Akt and STAT3 signaling pathways, suggesting that these 1,4-naphthoquinone derivatives may provide promising new anticancer agents to treat HCC.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Naftoquinonas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Naftoquinonas/química
14.
Mol Med Rep ; 17(2): 2626-2634, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207064

RESUMO

Quinalizarin may be a potential chemical agent for cancer therapy, as it exerts anti­tumour effects against a variety of different types of cancer. However, the underlying regulatory mechanism and signalling pathways of quinalizarin in lung cancer cells remains unknown. The present study sought to investigate the effects of quinalizarin on proliferation, apoptosis and reactive oxygen species (ROS) generation in lung cancer. MTT assays were used to evaluate the effects of quinalizarin on the viability of lung cancer A549, NCI­H460 and NCI­H23 cells. Flow cytometry was employed to evaluate the effects of quinalizarin on the cell cycle, apoptosis and ROS generation in A549 cells. Western blotting was performed to detect cell cycle and apoptosis­associated protein expression levels in A549 cells. Quinalizarin inhibited A549, NCI­H460 and NCI­H23 cell proliferation and induced A549 cell cycle arrest at the G0/G1 phase. Quinalizarin induced apoptosis by upregulating the expression of B­cell lymphoma 2 (Bcl­2)­associated agonist of cell death, cleaved­caspase­3 and cleaved­poly (adenosine diphosphate­ribose) polymerase, and downregulating the expression of Bcl­2. Furthermore, quinalizarin activated mitogen­activated protein kinase (MAPK) and p53, and inhibited the protein kinase B and signal transducer and activator of transcription­3 (STAT3) signalling pathways. In addition, quinalizarin increased ROS generation. The ROS scavenger N­acetyl­L­cysteine restored quinalizarin­induced cell apoptosis, and inactivated the MAPK and STAT3 signalling pathways. The results of the present study demonstrated that quinalizarin induces G0/G1 phase cell cycle arrest and apoptosis via ROS mediated­MAPK and STAT3 signalling pathways.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(8): 1085-1091, 2017 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-28801290

RESUMO

OBJECTIVE: To investigate quinalizarin-induced apoptosis in gastric cancer cells in vitro and explore the molecular mechanisms. METHODS: MTT assay was used to determine the cytotoxic effects of quinalizarin on human gastric cancer AGS, MKN-28 and MKN-45 cells. Annexin V-FITC/PI staining and flow cytometry were used to assess quinalizarin-induced apoptosis in AGS cells and its effect on intracellular ROS levels; the expression levels of apoptotic proteins in the cells were determined with Western blotting. RESULTS: Quinalizarin dose-dependently reduced the cell viabilities of the 3 gastric cancer cells (P<0.05). The IC50 values of quinalizarin in AGS, MKN-28 and MKN-45 cells were 7.07 µmol/L, 22.55 µmol/L and 14.18 µmol/L, respectively. Quinalizarin time-dependently induced apoptosis of AGS cells and potentiated the generation of intracellular reactive oxygen species (ROS) levels. Pretreatment with NAC, a scavenger of ROS, inhibited quinalizarin-induced apoptosis (P<0.001). Western blotting results showed that quinalizarin also up-regulated the expression levels of the apoptotic proteins including p-p38, p-JNK, Bad, cleaved caspase-3, and cleaved PARP-1 (P<0.05), and down-regulated the expression of the anti-apoptotic proteins p-Akt, p-ERK, and Bcl-2 (P<0.05). CONCLUSION: Quinalizarin inhibits the proliferation and induces apoptosis in gastric cancer cells in vitro through regulating intracellular ROS levels via the MAPK and Akt signaling pathways.

16.
Oncotarget ; 8(70): 115398-115412, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29383168

RESUMO

Cryptotanshinone (CT), isolated from the plant Salvia miltiorrhiza Bunge, has been reported to have potential anticancer effects on human prostate and breast cancer cells. However, the mechanisms of action of CT on gastric cancer (GC) cells are not well understood. Here we investigated the antitumor effects of CT on GC cells and its possible molecular mechanism. We found CT suppressed viability of twelve GC cell lines in a dose-dependent manner. CT induced cell cycle arrest at the G2/M phase and mitochondrial apoptosis accompanying the accumulation of reactive oxygen species (ROS). Pretreatment with ROS inhibitor N-acetyl-L-cysteine (NAC) blocked CT-induced apoptosis. CT increased p-JNK and p-p38, and decreased p-ERK and p-STAT3 protein expression, these effects were prevented by NAC. Furthermore, a xenograft assay showed that CT significantly inhibited MKN-45 cell-induced tumor growth in vivo by increasing expression of pro-apoptotic proteins (p-JNK, p-38 and cleaved-caspase-3) and reducing expression of anti-apoptotic proteins (p-ERK and p-STAT3) without adverse effects on nude mice weight. In conclusion, CT induced apoptosis and cell cycle arrest in GC cells via ROS-mediated MAPK and AKT signaling pathways, and this CT may be a useful compound for the developing anticancer agents for GC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa