Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1329949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601310

RESUMO

Parthenocarpy allows fruit set independently of fertilization. In parthenocarpic-prone tomato genotypes, fruit set can be achieved under pollen-limiting environmental conditions and in sterile mutants. Parthenocarpy is also regarded as a quality-related trait, when seedlessness is associated with positive fruit quality aspects. Among the different sources of genetic parthenocarpy described in tomato, the parthenocarpic fruit (pat) mutation is of particular interest because of its strong expressivity, high fruit set, and enhanced fruit quality. The complexity of the pat "syndrome" associates a strong competence for parthenocarpy with a complex floral phenotype involving stamen and ovule developmental aberrations. To understand the genetic basis of the phenotype, we mapped the pat locus within a 0.19-cM window of Chr3, comprising nine coding loci. A non-tolerated missense mutation found in the 14th exon of Solyc03g120910, the tomato ortholog of the Arabidopsis HD-Zip III transcription factor HB15 (SlHB15), cosegregated with the pat phenotype. The role of SlHB15 in tomato reproductive development was supported by its expression in developing ovules. The link between pat and SlHB15 was validated by complementation and knock out experiments by co-suppression and CRISPR/Cas9 approaches. Comparing the phenotypes of pat and those of Arabidopsis HB15 mutants, we argued that the gene plays similar functions in species with fleshy and dry fruits, supporting a conserved mechanism of fruit set regulation in plants.

2.
Plants (Basel) ; 11(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406862

RESUMO

Studies on the reproductive dynamics under heat stress are crucial to breed more tolerant cultivars. In tomato, cultivars, breeding lines, and wild species have been evaluated for their response to heat stress. Here, we addressed the study to a panel of selected landraces representing traditional genotypes that usually show high adaptation to local environments. In two experiments, spaced by 12 years, we set-up an identical experimental design with plants transplanted at two different dates to expose the second field to thermic stress with natural fluctuations. Such a strategy resulted in both a mild and severe stress in the two years. The landraces showed wide variation for both vegetative and reproductive traits; all traits were affected by heat, mostly with a significant Genotype*Environment interaction. A high broad-sense heritability was estimated for plant height, stigma position, pollen viability, and fruit weight. Low heritability estimates were found for the number of flowers, fruit set, and yield. Despite the interaction, traits recorded under control and heat conditions were positively correlated. Multivariate analysis located the genotypes in a topography that was stable under all conditions, except under the harshest temperatures. The study revealed that landraces present a wide variability for the response of reproductive traits to thermic challenges and that such a variation could be useful to dissect the traits with higher heritability and identify quantitative trait loci for breeding more resilient varieties.

3.
Front Plant Sci ; 13: 931233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937347

RESUMO

Italy is a recognized secondary center of diversification for cultivated tomato (Solanum lycopersicum L.). The study of phenotypic and genetic diversity in landrace collections is important for germplasm conservation and valorization. Here, we set up to study the tomato germplasm collected in the region of Lazio in Central Italy, with a focus on the distinctiveness among landraces and the attribution of membership to unnamed accessions. Our regional collection included 32 accessions belonging to eight different locally recognized landraces and 19 unnamed accessions. All accessions were gathered from local farmers and are preserved in the collection held at the Regional Agency for the Development and the Innovation of Lazio Agriculture (ARSIAL) and at the University of Tuscia. We included 13 control genotypes comprising nine landraces from neighbor regions and four reference cultivars. The collection showed wide phenotypic variability for several qualitative and quantitative traits, such as leaf border and shape, inflorescence type, fruit shape, green shoulder, fruit weight (range 14-277 g), locule number (2-12), shape index (0.54-2.65), yield (0.24-3.08 kg/plant), and soluble solids (3.4-7.5°B). A few landraces showed uncommon phenotypes, such as potato leaf, colorless fruit epidermis, or delayed ripening. Multivariate analysis of 25 cardinal phenotypic variables separated the accessions into two distinct groups; accessions showing a flattened-ribbed fruit were distinguished from those with round to elongate fruits with smooth structure. Genotyping analysis of 7,720 SNPs was performed using the tomato array platform SolCAP, to point out the genetic relationship among the studied accessions. A neighbor-joining tree analysis allowed to confirm or deny phenotypic data and to assign some of the unnamed accessions to recognized groups. Allelic status at marker loci linked to resistance genes commonly used in breeding identified accessions putatively derived from modern material or commercial hybrids, thus not classifiable as landraces. Overall, this study provided the information useful to preserve, valorize, and juridically protect tomato local landraces from the Lazio region and will in addition be helpful to their improvement by breeding.

4.
Hortic Res ; 9: uhac112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795386

RESUMO

The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.

5.
Front Nutr ; 6: 133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555653

RESUMO

Tomato (Solanum lycopersicum L.) is one of the most cultivated vegetable in the world and it represents a large source of bioactive compounds, including carotenoids and polyphenols (phenolic acids and flavonoids). However, the concentration of flavonoids in tomato is considered sub-optimal, particularly because anthocyanins are not generally present. Therefore, this crop has been the object of an intense metabolic engineering in order to obtain anthocyanin-enriched tomatoes by using either breeding or transgenic strategies. Some wild tomato species, such as S. chilense and S. cheesmaniae, biosynthesize anthocyanins in the fruit sub-epidermal tissue, and some alleles from those genotypes have been introgressed into a new developed purple tomato line, called "Sun Black" (SB). It is a tomato line with a purple skin color, both in green and in red fruit stages, due to the biosynthesis of anthocyanins in the peel, and a normal red color pulp, with a taste just like a traditional tomato. SB is the result of a breeding programme and it is not a genetically modified (GM) product. We report the chemical characterization and structure elucidation of the attractive anthocyanins found in the peel of SB tomato, as well as other bioactive compounds (carotenoids, polyphenols, vitamin C) of the whole fruit. Using one- and two-dimensional NMR experiments, the two main anthocyanins were identified to be petunidin 3-O-[6″-O-(4‴-O-E-p-coumaroyl-α-rhamnopyranosyl) -ß-glucopyranoside]-5-O-ß-glucopyranoside (petanin) and malvidin 3-O-[6″-O-(4‴-O-E-p-coumaroyl-α-rhamnopyranosyl)-ß-glucopyranoside]-5-O-ß-glucopyranoside (negretein). The total anthocyanins in the whole ripe fruit was 1.2 mg/g dry weight (DW); 7.1 mg/100 g fresh weight (FW). Chlorogenic acid (the most abundant phenolic acid) was 0.6 mg/g DW; 3.7 mg/100 g FW. The main flavonol, rutin was 0.8 mg/g DW; 5 mg/100 g FW. The total carotenoid content was 211.3 µg/g DW; 1,268 µg/100 g FW. The total phenolic content was 8.6 mg/g DW; 52.2 mg/100 g FW. The vitamin C content was 37.3 mg/100 g FW. The antioxidant activities as measured by the TEAC and ORAC assays were 31.6 and 140.3 µmol TE/g DW, respectively (193 and 855.8 µmol TE/100 g FW, respectively). The results show the unique features of this new tomato genotype with nutraceutical properties.

6.
Front Plant Sci ; 9: 1997, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713546

RESUMO

Parthenocarpy in a broad sense includes those processes that allow the production of seedless fruits. Such fruits are favorable to growers, because they are set independently of successful pollination, and to processors and consumers, because they are easier to deal with and to eat. Seedless fruits however represent a biological paradox because they do not contribute to offspring production. In this work, the occurrence of parthenocarpy in Angiosperms was investigated by conducting a bibliographic survey. We distinguished monospermic (single seeded) from plurispermic (multiseeded) species and wild from cultivated taxa. Out of 96 seedless taxa, 66% belonged to plurispermic species. Of these, cultivated species were represented six times higher than wild species, suggesting a selective pressure for parthenocarpy during domestication and breeding. In monospermic taxa, wild and cultivated species were similarly represented. The occurrence of parthenocarpy in wild species suggests that seedlessness may have an adaptive role. In monospermic species, seedless fruits are proposed to reduce seed predation through deceptive mechanisms. In plurispermic fruit species, parthenocarpy may exert an adaptive advantage under suboptimal pollination regimes, when too few embryos are formed to support fruit growth. In this situation, parthenocarpy offers the opportunity to accomplish the production and dispersal of few seeds, thus representing a selective advantage. Approximately 20 sources of seedlessness have been described in tomato. Excluding the EMS induced mutation parthenocarpic fruit (pat), the parthenocarpic phenotype always emerged in biparental populations derived from wide crosses between cultivated tomato and wild relatives. Following a theory postulated for apomictic species, we argument that wide hybridization could also be the force driving parthenocarpy, following the disruption of synchrony in time and space of reproductive developmental events, from sporogenesis to fruit development. The high occurrence of polyploidy among parthenocarpic species supported this suggestion. Other commonalities between apomixis and parthenocarpy emerged from genetic and molecular studies of the two phenomena. Such insights may improve the understanding of the mechanisms underlying these two reproductive variants of great importance to modern breeding.

7.
Front Plant Sci ; 7: 664, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242865

RESUMO

Increased interest toward traditional tomato varieties is fueled by the need to rescue desirable organoleptic traits and to improve the quality of fresh and processed tomatoes in the market. In addition, the phenotypic and genetic variation preserved in tomato landraces represents a means to understand the genetic basis of traits related to health and organoleptic aspects and improve them in modern varieties. To establish a framework for this approach, we studied the content of several metabolites in a panel of Italian tomato landraces categorized into three broad fruit type classes (flattened/ribbed, pear/oxheart, round/elongate). Three modern hybrids, corresponding to the three fruit shape typologies, were included as reference. Red ripe fruits were morphologically characterized and biochemically analyzed for their content in glycoalkaloids, phenols, amino acids, and Amadori products. The round/elongate types showed a higher content in glycoalkaloids, whereas flattened types had higher levels of phenolic compounds. Flattened tomatoes were also rich in total amino acids and in particular in glutamic acid. Multivariate analysis of amino acid content clearly separated the three classes of fruit types. Making allowance of the very low number of genotypes, phenotype-marker relationships were analyzed after retrieving single nucleotide polymorphisms (SNPs) among the landraces available in the literature. Sixty-six markers were significantly associated with the studied traits. The positions of several of these SNPs showed correspondence with already described genomic regions and QTLs supporting the reliability of the association. Overall the data indicated that significant changes in quality-related metabolites occur depending on the genetic background in traditional tomato germplasm, frequently according to specific fruit shape categories. Such a variability is suitable to harness association mapping for metabolic quality traits using this germplasm as an experimental population, paving the way for investigating their genetic/molecular basis, and facilitating breeding for quality-related compounds in tomato fruits.

8.
Plant Physiol Biochem ; 72: 125-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23769702

RESUMO

The production of anthocyanins in the tomato (Solanum lycopersicum L.) fruit is normally absent or poor, but a number of mutants or introgression lines are known to increase anthocyanin levels in vegetative and reproductive tissues. Through conventional breeding, a genetic combination was obtained with the remarkable phenotype of a deep purple fruit pigmentation, due to an accumulation of anthocyanins on the peel. Such a genotype was named Sun Black (SB) as a consequence of its sensitivity to light induction. When characterized for morpho-agronomic traits, SB plants showed increased fertility. Purple fruits displayed an arrangement of the epicarp cells different from normal tomatoes, a feature that could account for different mechanical properties and shelf-life potential. The SB genotype and, to a lesser extent, its single mutant parents showed the capacity to accumulate anthocyanins in the seedling root when grown under light. This phenotype, which was greatly improved by the addition of sucrose to the germination medium, proved to be useful as selection index and gave new insights for in vitro production of anthocyanin extracts. To assess the nutraceutical potential of purple tomatoes, we tested the activity of SB skin extracts on the proliferation of two human cancer cells lines. Cell proliferation was significantly inhibited by SB extract in a dose-dependent manner. When the bioactivity of SB extracts was compared with that of other anthocyanin-containing fruits or vegetables, a significant "Extract*Line" interaction was evidenced, suggesting a crucial role for the extract composition in terms of anthocyanidins and other eventual cell growth-inhibiting compounds.


Assuntos
Frutas/metabolismo , Solanum lycopersicum/metabolismo , Antocianinas/metabolismo , Antioxidantes/metabolismo , Cruzamento , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Frutas/química , Humanos , Solanum lycopersicum/química , Fenótipo , Extratos Vegetais/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa