Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045309

RESUMO

Perineuronal net (PNN) accumulation around parvalbumin-expressing (PV) inhibitory interneurons marks the closure of critical periods of high plasticity, whereas PNN removal reinstates juvenile plasticity in the adult cortex. Using targeted chemogenetic in vivo approaches in the adult mouse visual cortex, we found that transient inhibition of PV interneurons, through metabotropic or ionotropic chemogenetic tools, induced PNN regression. Electroencephalographic recordings indicated that inhibition of PV interneurons did not elicit unbalanced network excitation. Likewise, inhibition of local excitatory neurons also induced PNN regression, whereas chemogenetic excitation of either PV or excitatory neurons did not reduce the PNN. We also observed that chemogenetically inhibited PV interneurons exhibited reduced PNN compared to their untransduced neighbors, and confirmed that single PV interneurons express multiple genes enabling individual regulation of their own PNN density. Our results indicate that PNN density is regulated in the adult cortex by local changes of network activity that can be triggered by modulation of PV interneurons. PNN regulation may provide adult cortical circuits with an activity-dependent mechanism to control their local remodeling.SIGNIFICANCE STATEMENTThe perineuronal net is an extracellular matrix, which accumulates around individual parvalbumin-expressing inhibitory neurons during postnatal development, and is seen as a barrier that prevents plasticity of neuronal circuits in the adult cerebral cortex. We found that transiently inhibiting parvalbumin-expressing or excitatory cortical neurons triggers a local decrease of perineuronal net density. Our results indicate that perineuronal nets are regulated in the adult cortex depending on the activity of local microcircuits. These findings uncover an activity-dependent mechanism by which adult cortical circuits may locally control their plasticity.

2.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105848

RESUMO

Considerable efforts have been focused on shifting the wavelength of aequorin Ca2+-dependent blue bioluminescence through fusion with fluorescent proteins. This approach has notably yielded the widely used GFP-aequorin (GA) Ca2+ sensor emitting green light, and tdTomato-aequorin (Redquorin), whose bioluminescence is completely shifted to red, but whose Ca2+ sensitivity is low. In the present study, the screening of aequorin mutants generated at twenty-four amino acid positions in and around EF-hand Ca2+-binding domains resulted in the isolation of six aequorin single or double mutants (AequorinXS) in EF2, EF3, and C-terminal tail, which exhibited markedly higher Ca2+ sensitivity than wild-type aequorin in vitro. The corresponding Redquorin mutants all showed higher Ca2+ sensitivity than wild-type Redquorin, and four of them (RedquorinXS) matched the Ca2+ sensitivity of GA in vitro. RedquorinXS mutants exhibited unaltered thermostability and peak emission wavelengths. Upon stable expression in mammalian cell line, all RedquorinXS mutants reported the activation of the P2Y2 receptor by ATP with higher sensitivity and assay robustness than wt-Redquorin, and one, RedquorinXS-Q159T, outperformed GA. Finally, wide-field bioluminescence imaging in mouse neocortical slices showed that RedquorinXS-Q159T and GA similarly reported neuronal network activities elicited by the removal of extracellular Mg2+. Our results indicate that RedquorinXS-Q159T is a red light-emitting Ca2+ sensor suitable for the monitoring of intracellular signaling in a variety of applications in cells and tissues, and is a promising candidate for the transcranial monitoring of brain activities in living mice.


Assuntos
Equorina/genética , Cálcio/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Equorina/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Células CHO , Cálcio/farmacologia , Cricetulus , Motivos EF Hand , Células HEK293 , Humanos , Medições Luminescentes , Proteínas Luminescentes/genética , Camundongos Endogâmicos C57BL , Mutação , Rede Nervosa , Técnicas de Cultura de Órgãos , Estabilidade Proteica , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Proteínas Recombinantes de Fusão/genética
3.
J Neurosci Res ; 97(4): 414-432, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30604494

RESUMO

The activity of neuronal ensembles was monitored in neocortical slices from male rats using wide-field bioluminescence imaging of a calcium sensor formed with the fusion of green fluorescent protein and aequorin (GA) and expressed through viral transfer. GA expression was restricted to pyramidal neurons and did not conspicuously alter neuronal morphology or neocortical cytoarchitecture. Removal of extracellular magnesium or addition of GABA receptor antagonists triggered epileptiform flashes of variable amplitude and spatial extent, indicating that the excitatory and inhibitory networks were functionally preserved in GA-expressing slices. We found that agonists of muscarinic acetylcholine receptors largely increased the peak bioluminescence response to local electrical stimulation in layer I or white matter, and gave rise to a slowly decaying response persisting for tens of seconds. The peak increase involved layers II/III and V and did not result in marked alteration of response spatial properties. The persistent response involved essentially layer V and followed the time course of the muscarinic afterdischarge depolarizing plateau in layer V pyramidal cells. This plateau potential triggered spike firing in layer V, but not layer II/III pyramidal cells, and was accompanied by recurrent synaptic excitation in layer V. Our results indicate that wide-field imaging of GA bioluminescence is well suited to monitor local and global network activity patterns, involving different mechanisms of intracellular calcium increase, and occurring on various timescales.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Colinérgicos/farmacologia , Medições Luminescentes/métodos , Transmissão Sináptica/fisiologia , Acetilcolina/metabolismo , Potenciais de Ação/fisiologia , Animais , Carbacol/farmacologia , Córtex Cerebral/efeitos dos fármacos , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Receptores Muscarínicos/metabolismo
4.
Anal Bioanal Chem ; 406(11): 2695-707, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24553660

RESUMO

The main analytical use of Ca(2+)-regulated photoproteins from luminous coelenterates is for real-time non-invasive visualization of intracellular calcium concentration ([Ca(2+)]i) dynamics in cells and whole organisms. A limitation of this approach for in vivo deep tissue imaging is the fact that blue light emitted by the photoprotein is highly absorbed by tissue. Seven novel coelenterazine analogues were synthesized and their effects on the bioluminescent properties of recombinant obelin from Obelia longissima and aequorin from Aequorea victoria were evaluated. Only analogues having electron-donating groups (m-OCH3 and m-OH) on the C6 phenol moiety or an extended resonance system at the C8 position (1-naphthyl and α-styryl analogues) showed a significant red shift of light emission. Of these, only the α-styryl analogue displayed a sufficiently high light intensity to allow eventual tissue penetration. The possible suitability of this compound for in vivo assays was corroborated by studies with aequorin which allowed the monitoring of [Ca(2+)]i dynamics in cultured CHO cells and in hippocampal brain slices. Thus, the α-styryl coelenterazine analogue might be potentially useful for non-invasive, in vivo bioluminescence imaging in deep tissues of small animals.


Assuntos
Equorina/química , Imidazóis/química , Substâncias Luminescentes/química , Medições Luminescentes/instrumentação , Proteínas Luminescentes/química , Imagem Molecular/instrumentação , Pirazinas/química , Animais , Células CHO , Cricetulus , Hidrozoários , Imagem Molecular/métodos
5.
Methods Mol Biol ; 2274: 281-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34050480

RESUMO

Optogenetic calcium sensors enable the imaging in real-time of the activities of single or multiple neurons in brain slices and in vivo. Bioluminescent probes engineered from the natural calcium sensor aequorin do not require illumination, are virtually devoid of background signal, and exhibit wide dynamic range and low cytotoxicity. These probes are thus well suited for long-duration, whole-field recordings of multiple neurons simultaneously. Here, we describe a protocol for monitoring and analyzing the dynamics of neuronal ensembles using whole-field bioluminescence imaging of an aequorin-based sensor in brain slice.


Assuntos
Equorina/química , Técnicas Biossensoriais/métodos , Encéfalo/metabolismo , Cálcio/metabolismo , Substâncias Luminescentes/química , Medições Luminescentes/métodos , Neurônios/metabolismo , Animais , Transferência Ressonante de Energia de Fluorescência/métodos , Camundongos , Vias Neurais , Imagem Óptica/métodos
6.
J Biomed Opt ; 13(3): 031211, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18601535

RESUMO

The construction and application of genetically encoded intracellular calcium concentration ([Ca2+]i) indicators has a checkered history. Excitement raised over the creation of new probes is often followed by disappointment when it is found that the initial demonstrations of [Ca2+]i sensing capability cannot be leveraged into real scientific advances. Recombinant apo-aequorin cloned from Aequorea victoria was the first Ca2+ sensitive protein genetically targeted to subcellular compartments. In the jellyfish, bioluminescence resonance energy transfer (BRET) between Ca2+ bound aequorin and green fluorescent protein (GFP) emits green light. Similarly, Ca2+ sensitive bioluminescent reporters undergoing BRET have been constructed between aequorin and GFP, and more recently with other fluorescent protein variants. These hybrid proteins display red-shifted spectrums and have higher light intensities and stability compared to aequorin alone. We report BRET measurement of single-cell [Ca2+]i based on the use of electron-multiplying charge-coupled-detector (EMCCD) imaging camera technology, mounted on either a bioluminescence or conventional microscope. Our results show for the first time how these new technologies make facile long-term monitoring of [Ca2+]i at the single-cell level, obviating the need for expensive, fragile, and sophisticated equipment based on image-photon-detectors (IPD) that were until now the only technical recourse to dynamic BRET experiments of this type.


Assuntos
Equorina/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Medições Luminescentes/instrumentação , Proteínas Luminescentes/metabolismo , Técnicas de Sonda Molecular/instrumentação , Transdutores , Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Medições Luminescentes/métodos
7.
J Interferon Cytokine Res ; 22(4): 457-62, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12034028

RESUMO

The aim of this study was to investigate the contribution of endogenous - that is, without the addition of any interferon (IFN) inducer - type I IFN production in the defense against tumor development. To this purpose, the IFN-alpha receptor (IFNAR) knockout (KO)-induced mutation, resulting in the complete absence of IFN-alpha/beta activity, was introduced into a C3H genetic background by 10 backcross generations, followed by brother-sister matings for at least four generations. The resulting mice were inoculated either with syngeneic C3H melanoma K1735 cells, with allogeneic 3LL carcinoma cells, or with allogeneic B16F10 melanoma cells. With all three tumor cell lines, tumor development and ensuing mortality were enhanced in the IFNAR KO animals. This indicates that endogenous IFN-alpha/beta production is a mediator of natural immunity to tumor development.


Assuntos
Neoplasias Experimentais/etiologia , Receptores de Interferon/fisiologia , Animais , Carcinoma Pulmonar de Lewis/patologia , Divisão Celular , Feminino , Injeções Intramusculares , Injeções Subcutâneas , Cinética , Masculino , Melanoma Experimental/patologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Transplante de Neoplasias , Receptor de Interferon alfa e beta , Receptores de Interferon/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
8.
PLoS One ; 2(10): e974, 2007 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17912353

RESUMO

Rapid and transient elevations of Ca(2+) within cellular microdomains play a critical role in the regulation of many signal transduction pathways. Described here is a genetic approach for non-invasive detection of localized Ca(2+) concentration ([Ca(2+)]) rises in live animals using bioluminescence imaging (BLI). Transgenic mice conditionally expressing the Ca(2+)-sensitive bioluminescent reporter GFP-aequorin targeted to the mitochondrial matrix were studied in several experimental paradigms. Rapid [Ca(2+)] rises inside the mitochondrial matrix could be readily detected during single-twitch muscle contractions. Whole body patterns of [Ca(2+)] were monitored in freely moving mice and during epileptic seizures. Furthermore, variations in mitochondrial [Ca(2+)] correlated to behavioral components of the sleep/wake cycle were observed during prolonged whole body recordings of newborn mice. This non-invasive imaging technique opens new avenues for the analysis of Ca(2+) signaling whenever whole body information in freely moving animals is desired, in particular during behavioral and developmental studies.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Diagnóstico por Imagem/métodos , Animais , Animais Recém-Nascidos , Citosol/metabolismo , Diagnóstico por Imagem/instrumentação , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Contração Muscular , Neurônios/metabolismo , Oscilometria , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa