Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Cogn Neurosci ; 33(5): 799-813, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34449843

RESUMO

Theories of visual recognition postulate that our ability to understand our visual environment at a glance is based on the extraction of the gist of the visual scene, a first global and rudimentary visual representation. Gist perception would be based on the rapid analysis of low spatial frequencies in the visual signal and would allow a coarse categorization of the scene. We aimed to study whether the low spatial resolution information available in peripheral vision could modulate the processing of visual information presented in central vision. We combined behavioral measures (Experiments 1 and 2) and fMRI measures (Experiment 2). Participants categorized a scene presented in central vision (artificial vs. natural categories) while ignoring another scene, either semantically congruent or incongruent, presented in peripheral vision. The two scenes could either share the same physical properties (similar amplitude spectrum and spatial configuration) or not. Categorization of the central scene was impaired by a semantically incongruent peripheral scene, in particular when the two scenes were physically similar. This semantic interference effect was associated with increased activation of the inferior frontal gyrus. When the two scenes were semantically congruent, the dissimilarity of their physical properties impaired the categorization of the central scene. This effect was associated with increased activation in occipito-temporal areas. In line with the hypothesis of predictive mechanisms involved in visual recognition, results suggest that semantic and physical properties of the information coming from peripheral vision would be automatically used to generate predictions that guide the processing of signal in central vision.


Assuntos
Semântica , Percepção Visual , Hemodinâmica , Humanos , Imageamento por Ressonância Magnética , Reconhecimento Visual de Modelos , Estimulação Luminosa , Reconhecimento Psicológico
2.
Hum Brain Mapp ; 41(3): 779-796, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31721361

RESUMO

Mesial temporal lobe epilepsy (mTLE) affects the brain networks at several levels and patients suffering from mTLE experience cognitive impairment for language and memory. Considering the importance of language and memory reorganization in this condition, the present study explores changes of the embedded language-and-memory network (LMN) in terms of functional connectivity (FC) at rest, as measured with functional MRI. We also evaluate the cognitive efficiency of the reorganization, that is, whether or not the reorganizations support or allow the maintenance of optimal cognitive functioning despite the seizure-related damage. Data from 37 patients presenting unifocal mTLE were analyzed and compared to 48 healthy volunteers in terms of LMN-FC using two methods: pairwise correlations (region of interest [ROI]-to-ROI) and graph theory. The cognitive efficiency of the LMN-FC reorganization was measured using correlations between FC parameters and language and memory scores. Our findings revealed a large perturbation of the LMN hubs in patients. We observed a hyperconnectivity of limbic areas near the dysfunctional hippocampus and mainly a hypoconnectivity for several cortical regions remote from the dysfunctional hippocampus. The loss of FC was more important in left mTLE (L-mTLE) than in right (R-mTLE) patients. The LMN-FC reorganization may not be always compensatory and not always useful for patients as it may be associated with lower cognitive performance. We discuss the different connectivity patterns obtained and conclude that interpretation of FC changes in relation to neuropsychological scores is important to determine cognitive efficiency, suggesting the concept of "connectome" would gain to be associated with a "cognitome" concept.


Assuntos
Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Conectoma/métodos , Epilepsia do Lobo Temporal/fisiopatologia , Idioma , Sistema Límbico/fisiopatologia , Memória/fisiologia , Rede Nervosa/fisiopatologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Humanos , Sistema Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
3.
Epilepsy Behav ; 53: 140-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26575255

RESUMO

Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of 'know') and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language and long-term memory encoding/recall) instead of applying isolated tasks to map temporoparietal regions, (b) analyzing NE data based on performances recorded during REC, (c) double-mapping networks involved in naming and in long-term memory encoding and retrieval, (d) focusing on remembering with hippocampal activation and familiarity judgment with lateral temporal cortices activation, and (e) short duration of examination and feasibility. These aspects are of particular interest in patients with TLE, who frequently show impairment of these cognitive functions. Here, we show that the novel protocol is suited for this clinical evaluation.


Assuntos
Mapeamento Encefálico/métodos , Hipocampo/fisiologia , Idioma , Imageamento por Ressonância Magnética/métodos , Memória de Longo Prazo/fisiologia , Lobo Temporal/fisiologia , Adulto , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Reconhecimento Psicológico/fisiologia , Adulto Jovem
4.
Brain Cogn ; 99: 46-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232267

RESUMO

According to current models of visual perception scenes are processed in terms of spatial frequencies following a predominantly coarse-to-fine processing sequence. Low spatial frequencies (LSF) reach high-order areas rapidly in order to activate plausible interpretations of the visual input. This triggers top-down facilitation that guides subsequent processing of high spatial frequencies (HSF) in lower-level areas such as the inferotemporal and occipital cortices. However, dynamic interactions underlying top-down influences on the occipital cortex have never been systematically investigated. The present fMRI study aimed to further explore the neural bases and effective connectivity underlying coarse-to-fine processing of scenes, particularly the role of the occipital cortex. We used sequences of six filtered scenes as stimuli depicting coarse-to-fine or fine-to-coarse processing of scenes. Participants performed a categorization task on these stimuli (indoor vs. outdoor). Firstly, we showed that coarse-to-fine (compared to fine-to-coarse) sequences elicited stronger activation in the inferior frontal gyrus (in the orbitofrontal cortex), the inferotemporal cortex (in the fusiform and parahippocampal gyri), and the occipital cortex (in the cuneus). Dynamic causal modeling (DCM) was then used to infer effective connectivity between these regions. DCM results revealed that coarse-to-fine processing resulted in increased connectivity from the occipital cortex to the inferior frontal gyrus and from the inferior frontal gyrus to the inferotemporal cortex. Critically, we also observed an increase in connectivity strength from the inferior frontal gyrus to the occipital cortex, suggesting that top-down influences from frontal areas may guide processing of incoming signals. The present results support current models of visual perception and refine them by emphasizing the role of the occipital cortex as a cortical site for feedback projections in the neural network underlying coarse-to-fine processing of scenes.


Assuntos
Atenção/fisiologia , Teorema de Bayes , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
5.
J Cogn Neurosci ; 25(8): 1315-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23574583

RESUMO

Using large natural scenes filtered in spatial frequencies, we aimed to demonstrate that spatial frequency processing could not only be retinotopically mapped but could also be lateralized in both hemispheres. For this purpose, participants performed a categorization task using large black and white photographs of natural scenes (indoors vs. outdoors, with a visual angle of 24° × 18°) filtered in low spatial frequencies (LSF), high spatial frequencies (HSF), and nonfiltered scenes, in block-designed fMRI recording sessions. At the group level, the comparison between the spatial frequency content of scenes revealed first that, compared with HSF, LSF scene categorization elicited activation in the anterior half of the calcarine fissures linked to the peripheral visual field, whereas, compared with LSF, HSF scene categorization elicited activation in the posterior part of the occipital lobes, which are linked to the fovea, according to the retinotopic property of visual areas. At the individual level, functional activations projected on retinotopic maps revealed that LSF processing was mapped in the anterior part of V1, whereas HSF processing was mapped in the posterior and ventral part of V2, V3, and V4. Moreover, at the group level, direct interhemispheric comparisons performed on the same fMRI data highlighted a right-sided occipito-temporal predominance for LSF processing and a left-sided temporal cortex predominance for HSF processing, in accordance with hemispheric specialization theories. By using suitable method of analysis on the same data, our results enabled us to demonstrate for the first time that spatial frequencies processing is mapped retinotopically and lateralized in human occipital cortex.


Assuntos
Mapeamento Encefálico , Lateralidade Funcional/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Espacial/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio , Estimulação Luminosa , Tempo de Reação , Reconhecimento Psicológico , Córtex Visual/irrigação sanguínea , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia , Adulto Jovem
6.
Hum Brain Mapp ; 34(10): 2574-91, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22488985

RESUMO

This functional magnetic resonance imaging (fMRI) study aimed at examining the cerebral regions involved in the auditory perception of prosodic focus using a natural focus detection task. Two conditions testing the processing of simple utterances in French were explored, narrow-focused versus broad-focused. Participants performed a correction detection task. The utterances in both conditions had exactly the same segmental, lexical, and syntactic contents, and only differed in their prosodic realization. The comparison between the two conditions therefore allowed us to examine processes strictly associated with prosodic focus processing. To assess the specific effect of pitch on hemispheric specialization, a parametric analysis was conducted using a parameter reflecting pitch variations specifically related to focus. The comparison between the two conditions reveals that brain regions recruited during the detection of contrastive prosodic focus can be described as a right-hemisphere dominant dual network consisting of (a) ventral regions which include the right posterosuperior temporal and bilateral middle temporal gyri and (b) dorsal regions including the bilateral inferior frontal, inferior parietal and left superior parietal gyri. Our results argue for a dual stream model of focus perception compatible with the asymmetric sampling in time hypothesis. They suggest that the detection of prosodic focus involves an interplay between the right and left hemispheres, in which the computation of slowly changing prosodic cues in the right hemisphere dynamically feeds an internal model concurrently used by the left hemisphere, which carries out computations over shorter temporal windows.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Idioma , Imageamento por Ressonância Magnética , Percepção da Fala/fisiologia , Adulto , Sinais (Psicologia) , Dominância Cerebral/fisiologia , Feminino , Humanos , Masculino , Modelos Neurológicos , Modelos Psicológicos , Rede Nervosa/fisiologia , Fonação , Discriminação da Altura Tonal/fisiologia , Percepção da Altura Sonora/fisiologia , Adulto Jovem
7.
Cortex ; 157: 14-29, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272329

RESUMO

The functional organisation of the medial temporal lobe (MTL) has long been described on the basis of cognitive processes such as recollection or familiarity. However, this view has recently been challenged, and researchers have proposed decomposing cognitive phenomena into representations and operations. According to the representational view, representations, such as scenes for the hippocampus and objects for the perirhinal cortex, are critical in understanding the role of MTL regions in cognition. In the present study, 51 healthy young participants underwent functional magnetic resonance imaging (fMRI) while completing a visual-discrimination task. Subsequently, half of the participants performed a patch-cue recognition procedure in which "Rec" responses are believed to reflect the operation of pattern completion, whereas the other half performed a whole-item remember/know procedure. We replicated the previously-reported demonstration that hippocampal involvement in pattern completion is preferential for scenes as compared with objects. In contrast, the perirhinal cortex was more recruited for object processing than for scene processing. We further extended these results to the operations of strength-signal memory and visual discrimination. Finally, the modulation of hippocampal engagement in pattern completion by representational content was found to be specific to its anterior segment. This observation is consistent with the proposal that this segment would process broad/global representations, whereas the posterior hippocampus would perform sharp/local representations. Taken together, these results favour the representational view of MTL functional organisation, but support that this specialisation differs along the hippocampal long-axis.


Assuntos
Hipocampo , Córtex Perirrinal , Humanos , Hipocampo/fisiologia , Percepção Visual/fisiologia , Lobo Temporal/fisiologia , Reconhecimento Psicológico/fisiologia , Córtex Perirrinal/fisiologia , Imageamento por Ressonância Magnética
9.
Neuroimage Clin ; 31: 102702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34090125

RESUMO

Current theoretical frameworks suggest that human behaviors are based on strong and complex interactions between cognitive processes such as those underlying language and memory functions in normal and neurological populations. We were interested in assessing the dynamic cerebral substrate of such interaction between language and declarative memory, as the composite function, in healthy controls (HC, N = 19) and patients with temporal lobe epilepsy (TLE, N = 16). Our assumption was that the language and declarative memory integration is based on a language-and-memory network (LMN) that is dynamic and reconfigures according to task demands and brain status. Therefore, we explored two types of LMN dynamics, a state reconfiguration (intrinsic resting-state compared to extrinsic state assessed with a sentence recall task) and a reorganization of state reconfiguration (TLE compared to HC). The dynamics was evaluated in terms of segregation (community or module detection) and integration (connector hubs). In HC, the level of segregation was the same in both states and the mechanism of LMN state reconfiguration was shown through module change of key language and declarative memory regions with integrative roles. In TLE patients, the reorganization of LMN state reconfiguration was reflected in segregation increase and extrinsic modules that were based on shorter-distance connections. While lateral and mesial temporal regions enabled state reconfiguration in HC, these regions showed reduced flexibility in TLE. We discuss our results in a connectomic perspective and propose a dynamic model of language and declarative memory functioning. We claim that complex and interactive cognitive functions, such as language and declarative memory, should be investigated dynamically, considering the interaction between cognitive networks.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Voluntários Saudáveis , Humanos , Idioma , Imageamento por Ressonância Magnética
10.
Brain Imaging Behav ; 15(3): 1562-1579, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32761343

RESUMO

Previous studies have highlighted the importance of considering cognitive functions from a dynamic and interactive perspective and multiple evidence was brought for a language and memory interaction. In this study performed with healthy participants, we present a new protocol entitled GE2REC that interactively accesses the neural representation of language-and-memory network. This protocol consists of three runs related to each other, providing a link between tasks, in order to assure an interactive measure of linguistic and episodic memory processes. GE2REC consists of a sentence generation (GE) in the auditory modality and two recollecting (2REC) memory tasks, one recognition performed in the visual modality, and another one recall performed in the auditory modality. Its efficiency was evaluated in 20 healthy volunteers using a 3T MR imager. Our results corroborate the ability of GE2REC to robustly activate fronto-temporo-parietal language network as well as temporal mesial, prefrontal and parietal cortices in encoding during sentence generation and recognition. GE2REC is useful because it: (a) requires simultaneous and interactive language-and-memory processes and jointly maps their neural basis; (b) explores encoding and retrieval, managing to elicit activation of mesial temporal structures; (c) is easy to perform, hence being suitable for more restrictive settings, and (d) has an ecological dimension of tasks and stimuli. GE2REC may be useful for studying neuroplasticity of cognitive functions, especially in patients with temporal lobe epilepsy who show reorganization of both language and memory networks. Overall, GE2REC can provide valuable information in terms of the practical foundation of exploration language and memory interconnection.


Assuntos
Epilepsia do Lobo Temporal , Idioma , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Memória
11.
Neuroimage ; 44(3): 1152-62, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18977304

RESUMO

Previous behavioral data suggest that the salience of taxonomic (e.g., hammer-saw) and thematic (e.g., hammer-nail) conceptual relations depends on object categories. Furthermore, taxonomic and thematic relations would be differentially grounded in the sensory-motor system. Using a picture matching task, we asked adult participants to identify taxonomic and thematic relations for non-manipulable and manipulable natural and artifact targets (e.g., animals, fruit, tools and vehicles, respectively) inside and outside a 3 T MR scanner. Behavioral data indicated that taxonomic relations are identified faster in natural objects while thematic relations are processed faster in artifacts, particularly manipulable ones (e.g., tools). Neuroimaging findings revealed that taxonomic processing specifically activates the bilateral visual areas (cuneus, BA 18), particularly for non-manipulable natural objects (e.g., animals). On the contrary, thematic processing specifically recruited a bilateral temporo-parietal network including the inferior parietal lobules (IPL, BA 40) and middle temporal gyri (MTG, BA 39/21/22). Left IPL and MTG activation was stronger for manipulable than for non-manipulable artifacts (e.g., tools vs. vehicles) during thematic processing. Right IPL and MTG activation was greater for both artifacts compared to natural objects during thematic processing (manipulable and non-manipulable ones, e.g., tools and vehicles). While taxonomic relations would selectively rely on perceptual similarity processing, thematic relations would specifically activate visuo-motor regions involved in action and space processing. In line with embodied views of concepts, our findings show that taxonomic and thematic conceptual relations are based on different sensory-motor processes. It suggests that they may have different roles in concept formation and processing depending on object categories.


Assuntos
Cognição/fisiologia , Formação de Conceito/fisiologia , Imageamento por Ressonância Magnética/métodos , Destreza Motora , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
12.
Front Psychol ; 10: 2019, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620039

RESUMO

Inner speech has been shown to vary in form along several dimensions. Along condensation, condensed inner speech forms have been described, that are supposed to be deprived of acoustic, phonological and even syntactic qualities. Expanded forms, on the other extreme, display articulatory and auditory properties. Along dialogality, inner speech can be monologal, when we engage in internal soliloquy, or dialogal, when we recall past conversations or imagine future dialogs involving our own voice as well as that of others addressing us. Along intentionality, it can be intentional (when we deliberately rehearse material in short-term memory) or it can arise unintentionally (during mind wandering). We introduce the ConDialInt model, a neurocognitive predictive control model of inner speech that accounts for its varieties along these three dimensions. ConDialInt spells out the condensation dimension by including inhibitory control at the conceptualization, formulation or articulatory planning stage. It accounts for dialogality, by assuming internal model adaptations and by speculating on neural processes underlying perspective switching. It explains the differences between intentional and spontaneous varieties in terms of monitoring. We present an fMRI study in which we probed varieties of inner speech along dialogality and intentionality, to examine the validity of the neuroanatomical correlates posited in ConDialInt. Condensation was also informally tackled. Our data support the hypothesis that expanded inner speech recruits speech production processes down to articulatory planning, resulting in a predicted signal, the inner voice, with auditory qualities. Along dialogality, covertly using an avatar's voice resulted in the activation of right hemisphere homologs of the regions involved in internal own-voice soliloquy and in reduced cerebellar activation, consistent with internal model adaptation. Switching from first-person to third-person perspective resulted in activations in precuneus and parietal lobules. Along intentionality, compared with intentional inner speech, mind wandering with inner speech episodes was associated with greater bilateral inferior frontal activation and decreased activation in left temporal regions. This is consistent with the reported subjective evanescence and presumably reflects condensation processes. Our results provide neuroanatomical evidence compatible with predictive control and in favor of the assumptions made in the ConDialInt model.

13.
Epileptic Disord ; 21(5): 411-424, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31638580

RESUMO

We report two patients suffering from drug-resistant temporal lobe epilepsy to show how their neuroplasticity can be apprehended using a multimodal, integrative and clinically relevant approach. This is a proof of concept based on using multimodal data including: (1) white matter structural connectivity (DTI) of the main tracts involved in language and memory; (2) neurophysiological biomarkers (fMRI-BOLD signal and LI lateralization indices); and (3) cognitive scores as measured during the neuropsychological assessment. We characterized tri-modal data for each patient using a descriptive integrative approach, in terms of reorganization and by comparing with a group of healthy participants. This proof of concept suggests that the inclusion of multimodal data in clinical studies is currently a major challenge. Since the various datasets obtained from MRI neuroimaging and cognitive scores are probably interrelated, it is important to go beyond the mono-modal approach and move towards greater integration of several multimodal data. Multimodal integration of anatomical, functional, and cognitive data facilitates the identification of comprehensive neurocognitive patterns in epileptic patients, thus enabling clinicians to differentiate between reorganization profiles and help to predict post-surgical outcomes for curative neurosurgery.


Assuntos
Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Idioma , Memória/fisiologia , Lobo Temporal/fisiopatologia , Adulto , Lobectomia Temporal Anterior/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Lobo Temporal/cirurgia
14.
Neuropsychologia ; 112: 125-134, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29522759

RESUMO

Visual extinction, a parietal syndrome in which patients exhibit perceptual impairments when two objects are simultaneously presented in the visual field, is reduced when objects are correctly positioned for action, indicating that action helps patients' visual attention. Similarly, healthy individuals make faster action decisions on object pairs that appear in left/right standard co-location for actions in comparison to object pairs that appear in a mirror location, a phenomenon called the paired-object affordance effect. However, the neural locus of such effect remains debated and may be related to the activity of ventral or dorsal brain regions. The present fMRI study aims at determining the neural substrates of the paired-object affordance effect. Fourteen right-handed participants made decisions about semantically related (i.e. thematically related and co-manipulated) and unrelated object pairs. Pairs were either positioned in a standard location for a right-handed action (with the active object - lid - in the right visual hemifield, and the passive object - pan - in the left visual hemifield), or in the reverse location. Behavioral results showed a suppression of the observed cost of correctly positioning related pairs for action when performing action decisions (deciding if the two objects are usually used together), but not when performing contextual decisions (deciding if the two objects are typically found in the kitchen). Anterior regions of the dorsal stream (e.g. supplementary motor area) responded to inadequate object co-positioning for action, but only when the perceptual task required action decisions. In the ventral cortex, the left lateral occipital complex showed increased activation for objects correctly positioned for action in all conditions except when neither task demands nor object relatedness was relevant for action. Thus, fMRI results demonstrated a joint contribution of ventral and dorsal cortical streams to the paired-affordance effect. They further suggest that this contribution may depend on contextual situations and task demands, in line with flexible views of affordance evocation.


Assuntos
Atenção/fisiologia , Córtex Cerebral/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Tomada de Decisões/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Desempenho Psicomotor/fisiologia , Vias Visuais/diagnóstico por imagem , Adulto Jovem
15.
Front Aging Neurosci ; 10: 235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123123

RESUMO

Normal aging is characterized by decline in cognitive functioning in conjunction with extensive gray matter (GM) atrophy. A first aim of this study was to determine GM volume differences related to aging by comparing two groups of participants, middle-aged group (MAG, mean age 41 years, N = 16) and older adults (OG, mean age 71 years, N = 14) who underwent an magnetic resonance images (MRI) voxel-based morphometry (VBM) evaluation. The VBM analyses included two optimized pipelines, for the cortex and for the cerebellum. Participants were also evaluated on a wide range of cognitive tests assessing both domain-general and language-specific processes, in order to examine how GM volume differences between OG and MAG relate to cognitive performance. Our results show smaller bilateral GM volume in the OG relative to the MAG, in several cerebral and right cerebellar regions involved in language and executive functions. Importantly, our results also revealed smaller GM volume in the right cerebellum in OG relative to MAG, supporting the idea of a complex cognitive role for this structure. This study provides a broad picture of cerebral, but also cerebellar and cognitive changes associated with normal aging.

16.
Geriatr Psychol Neuropsychiatr Vieil ; 16(1): 96-105, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29402757

RESUMO

Environmental factors contribute to the constitution and maintenance of the cognitive reserve and partially explain the variability of cognitive performance in older individuals. We assessed the role of leisure activities - social and individual - on the access to lexico-semantic representations evaluated through a task of object naming (ON). We hypothesize that compared to individual, social leisure activities explain better the ON performance in the older adults, which is explained by a mechanism of neural reserve. Our results in older adults indicate (a) a significant correlation between leisure social activities and the response time for ON, (b) a significant correlation between link the neural activity of the left superior and medial frontal (SmFG) for ON and leisure social activities. Interestingly, the activity of the left SmFG partially mediates the relationship between social activities and OD performance. We suggest that social leisure activities may contribute to maintain ON performances in healthy aging, through a neural reserve mechanism, in relation with left SmFG activity. This region is typically involved in the access to semantic representations, guided by the emotional state. These results open interesting perspectives on the role of social leisure activities on lexical production during aging.


Assuntos
Reserva Cognitiva , Envelhecimento Saudável/psicologia , Atividades de Lazer/psicologia , Testes Neuropsicológicos , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação , Meio Social
17.
Eur J Radiol ; 63(2): 274-85, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17339089

RESUMO

This fMRI study performed in healthy subjects aimed at using a statistical approach in order to determine significant functional differences between hemispheres and to assess specialized regions activated during a phonological and during a semantic task. This approach ("flip" method and subsequent statistical analyses of the parameter estimates extracted from regions of interest) allows identifying: (a) hemispheric specialized regions for each language task [semantic (living categorization) and phonological (rhyme detection)] and (b) condition-specific regions with respect to paradigm conditions (task and control). Our results showed that the rhyme-specific task regions were the inferior frontal (sub-region of BA 44, 45) and left inferior parietal (BA 40, 39) lobules. Furthermore, within the inferior parietal lobule, the angular gyrus was specific to target (rhyming) items (related to successfully grapho-phonemic processing). The categorization-specific task regions were the left inferior frontal (sub-region of BA 44, 45) and superior temporal (BA 22) cortices. Furthermore, the superior temporal gyrus was related to non-target (non-living) items (correlated to task difficulty). The relatively new approach used in this study has the advantage of providing: (a) statistical significance of the hemispheric specialized regions for a given language task and (b) supplementary information in terms of paradigm condition-specificity of the activated regions. The results (standard hemispheric specialized regions for a semantic and for a phonological task) obtained in healthy subjects may constitute a basement for mapping language and assessing hemispheric predominance in epileptic patients before surgery and avoiding post-surgical impairments of language.


Assuntos
Mapeamento Encefálico/métodos , Cérebro/fisiologia , Cognição/fisiologia , Dominância Cerebral/fisiologia , Potenciais Evocados/fisiologia , Imageamento por Ressonância Magnética/métodos , Percepção da Fala/fisiologia , Adulto , Humanos , Masculino , Semântica , Análise e Desempenho de Tarefas
18.
Front Hum Neurosci ; 11: 325, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690506

RESUMO

It has been suggested that dorsal and ventral pathways support distinct aspects of language processing. Yet, the full extent of their involvement and their inter-regional connectivity in visual word recognition is still unknown. Studies suggest that they might reflect the dual-route model of reading, with the dorsal pathway more involved in grapho-phonological conversion during phonological tasks, and the ventral pathway performing lexico-semantic access during semantic tasks. Furthermore, this subdivision is also suggested at the level of the inferior frontal cortex, involving ventral and dorsal parts for lexico-semantic and phonological processing, respectively. In the present study, we assessed inter-regional brain connectivity and task-induced modulations of brain activity during a phoneme detection and semantic categorization tasks, using fMRI in healthy subject. We used a dynamic causal modeling approach to assess inter-regional connectivity and task demand modulation within the dorsal and ventral pathways, including the following network components: the ventral occipito-temporal cortex (vOTC; dorsal and ventral), the superior temporal gyrus (STG; dorsal), the dorsal inferior frontal gyrus (dIFG; dorsal), and the ventral IFG (vIFG; ventral). We report three distinct inter-regional interactions supporting orthographic information transfer from vOTC to other language regions (vOTC -> STG, vOTC -> vIFG and vOTC -> dIFG) regardless of task demands. Moreover, we found that (a) during semantic processing (direct ventral pathway) the vOTC -> vIFG connection strength specifically increased and (b) a lack of modulation of the vOTC -> dIFG connection strength by the task that could suggest a more general involvement of the dorsal pathway during visual word recognition. Results are discussed in terms of anatomo-functional connectivity of visual word recognition network.

19.
Front Aging Neurosci ; 9: 125, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536520

RESUMO

Although older adults exhibit normal accuracy in performing word retrieval and generation (lexical production; e.g., object naming), they are generally slower in responding than younger adults. To maintain accuracy, older adults recruit compensatory mechanisms and strategies. We focused on two such possible compensatory mechanisms, one semantic and one executive. These mechanisms are reflected at inter- and intra-hemispheric levels by various patterns of reorganization of lexical production cerebral networks. Hemispheric reorganization (HR) changes were also evaluated in relation to increase naming latencies. Using functional magnetic resonance imaging (fMRI), we examined 27 healthy participants (from 30 years to 85 years) during an object naming task, exploring and identifying task-related patterns of cerebral reorganization. We report two main results. First, we observed a left intra-hemispheric pattern of reorganization, the left anterior-posterior aging (LAPA) effect, consisting of supplementary activation of left posterior (temporo-parietal) regions in older adults and asymmetric activation along the left fronto-temporal axis. This pattern suggests that older adults recruit posterior semantic regions to perform object naming. The second finding consisted of bilateral recruitment of frontal regions to maintain appropriate response times, especially in older adults who were faster performers. This pattern is discussed in terms of compensatory mechanism. We suggest that aging is associated with multiple, co-existing compensation and reorganization mechanisms and patterns associated with lexical production.

20.
PLoS One ; 11(1): e0144393, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26757433

RESUMO

Visual processing of emotional stimuli critically depends on the type of cognitive appraisal involved. The present fMRI pilot study aimed to investigate the cerebral correlates involved in the visual processing of emotional scenes in two tasks, one emotional, based on the appraisal of personal emotional experience, and the other motivational, based on the appraisal of the tendency to action. Given that the use of spatial frequency information is relatively flexible during the visual processing of emotional stimuli depending on the task's demands, we also explored the effect of the type of spatial frequency in visual stimuli in each task by using emotional scenes filtered in low spatial frequency (LSF) and high spatial frequencies (HSF). Activation was observed in the visual areas of the fusiform gyrus for all emotional scenes in both tasks, and in the amygdala for unpleasant scenes only. The motivational task induced additional activation in frontal motor-related areas (e.g. premotor cortex, SMA) and parietal regions (e.g. superior and inferior parietal lobules). Parietal regions were recruited particularly during the motivational appraisal of approach in response to pleasant scenes. These frontal and parietal activations, respectively, suggest that motor and navigation processes play a specific role in the identification of the tendency to action in the motivational task. Furthermore, activity observed in the motivational task, in response to both pleasant and unpleasant scenes, was significantly greater for HSF than for LSF scenes, suggesting that the tendency to action is driven mainly by the detailed information contained in scenes. Results for the emotional task suggest that spatial frequencies play only a small role in the evaluation of unpleasant and pleasant emotions. Our preliminary study revealed a partial distinction between visual processing of emotional scenes during identification of the tendency to action, and during identification of personal emotional experiences. It also illustrates flexible use of the spatial frequencies contained in scenes depending on their emotional valence and on task demands.


Assuntos
Cérebro/fisiologia , Emoções , Percepção Espacial/fisiologia , Vias Visuais/fisiologia , Tonsila do Cerebelo/fisiologia , Comportamento , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Motivação , Projetos Piloto , Tempo de Reação , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa