RESUMO
Floral scent plays a crucial role in the reproductive process of many plants. Humans have been fascinated by floral scents throughout history, and have transported and traded floral scent products for which they have found multiple uses, such as in food additives, hygiene and perfume products, and medicines. Yet the scientific study of how plants synthesize floral scent compounds began later than studies on most other major plant metabolites, and the first report of the characterization of an enzyme responsible for the synthesis of a floral scent compound, namely linalool in Clarkia breweri, a California annual, appeared in 1994. In the almost 30 years since, enzymes and genes involved in the synthesis of hundreds of scent compounds from multiple plant species have been described. This review recapitulates this history and describes the major findings relating to the various aspects of floral scent biosynthesis and emission, including genes and enzymes and their evolution, storage and emission of scent volatiles, and the regulation of the biochemical processes.
Assuntos
Odorantes , Plantas , Humanos , Plantas/genética , Flores/genética , Flores/químicaRESUMO
Glandular trichomes, known as metabolic cell factories, have been proposed as highly suitable for metabolically engineering the production of plant high-value specialized metabolites. Natural pyrethrins, found only in Dalmatian pyrethrum (Tanacetum cinerariifolium), are insecticides with low mammalian toxicity and short environmental persistence. Type I pyrethrins are esters of the monoterpenoid trans-chrysanthemic acid with one of the three rethrolone-type alcohols. To test if glandular trichomes can be made to synthesize trans-chrysanthemic acid, we reconstructed its biosynthetic pathway in tomato type VI glandular trichomes, which produce large amounts of terpenoids that share the precursor dimethylallyl diphosphate (DMAPP) with this acid. This was achieved by coexpressing the trans-chrysanthemic acid pathway related genes including TcCDS encoding chrysanthemyl diphosphate synthase and the fusion gene of TcADH2 encoding the alcohol dehydrogenase 2 linked with TcALDH1 encoding the aldehyde dehydrogenase 1 under the control of a newly identified type VI glandular trichome-specific metallocarboxypeptidase inhibitor promoter. Whole tomato leaves harboring type VI glandular trichomes expressing all three aformentioned genes had a concentration of total trans-chrysanthemic acid that was about 1.5-fold higher (by mole number) than the levels of ß-phellandrene, the dominant monoterpene present in non-transgenic leaves, while the levels of ß-phellandrene and the representative sesquiterpene ß-caryophyllene in transgenic leaves were reduced by 96% and 81%, respectively. These results suggest that the tomato type VI glandular trichome is an alternative platform for the biosynthesis of trans-chrysanthemic acid by metabolic engineering.
Assuntos
Chrysanthemum cinerariifolium , Inseticidas , Piretrinas , Solanum lycopersicum , Animais , Chrysanthemum cinerariifolium/genética , Inseticidas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mamíferos/metabolismo , Monoterpenos/metabolismo , Folhas de Planta/metabolismo , Piretrinas/metabolismo , Tricomas/genética , Tricomas/metabolismoRESUMO
We show here that the side chain of pogostone, one of the major components of patchouli oil obtained from Pogostemon cablin and possessing a variety of pharmacological activities, is derived from 4-methylvaleric acid. We also show that 4-methylvaleric acid is produced through the one-carbon α-ketoacid elongation pathway with the involvement of the key enzyme 2-isobutylmalate synthase (IBMS), a newly identified enzyme related to isopropylmalate synthase (IPMS) of leucine (Leu) biosynthesis. Site-directed mutagenesis identified Met132 in the N-terminal catalytic region as affecting the substrate specificity of PcIBMS1. Even though PcIBMS1 possesses the C-terminal domain that in IPMS serves to mediate Leu inhibition, it is insensitive to Leu. The observation of the evolution of IBMS from IPMS, as well as previously reported examples of IPMS-related genes involved in making glucosinolates in Brassicaceae, acylsugars in Solanaceae, and flavour compounds in apple, indicate that IPMS genes represent an important pool for the independent evolution of genes for specialised metabolism.
Assuntos
2-Isopropilmalato Sintase , Óleos Voláteis , 2-Isopropilmalato Sintase/química , 2-Isopropilmalato Sintase/genética , 2-Isopropilmalato Sintase/metabolismo , Cinética , Leucina/metabolismoRESUMO
The hormone salicylic acid (SA) plays crucial roles in plant defense, stress responses, and in the regulation of plant growth and development. Whereas the biosynthetic pathways and biological functions of SA have been extensively studied, SA catabolism is less well understood. In this study, we report the identification and functional characterization of an FAD/NADH-dependent SA 1-hydroxylase from tomato (Solanum lycopersicum; SlSA1H), which catalyzes the oxidative decarboxylation of SA to catechol. Transcript levels of SlSA1H were highest in stems and its expression was correlated with the formation of the methylated catechol derivatives guaiacol and veratrole. Consistent with a role in SA catabolism, SlSA1H RNAi plants accumulated lower amounts of guaiacol and failed to produce any veratrole. Two O-methyltransferases involved in the conversion of catechol to guaiacol and guaiacol to veratrole were also functionally characterized. Subcellular localization analyses revealed the cytosolic localization of this degradation pathway. Phylogenetic analysis and functional characterization of SA1H homologs from other species indicated that this type of FAD/NADH-dependent SA 1-hydroxylases evolved recently within the Solanaceae family.
Assuntos
Oxigenases de Função Mista/metabolismo , Ácido Salicílico/metabolismo , Catecóis/metabolismo , Regulação da Expressão Gênica de Plantas , Guaiacol/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Proteína O-Metiltransferase/metabolismoRESUMO
Plant specialized metabolism (SM) enzymes produce lineage-specific metabolites with important ecological, evolutionary, and biotechnological implications. Using Arabidopsis thaliana as a model, we identified distinguishing characteristics of SM and GM (general metabolism, traditionally referred to as primary metabolism) genes through a detailed study of features including duplication pattern, sequence conservation, transcription, protein domain content, and gene network properties. Analysis of multiple sets of benchmark genes revealed that SM genes tend to be tandemly duplicated, coexpressed with their paralogs, narrowly expressed at lower levels, less conserved, and less well connected in gene networks relative to GM genes. Although the values of each of these features significantly differed between SM and GM genes, any single feature was ineffective at predicting SM from GM genes. Using machine learning methods to integrate all features, a prediction model was established with a true positive rate of 87% and a true negative rate of 71%. In addition, 86% of known SM genes not used to create the machine learning model were predicted. We also demonstrated that the model could be further improved when we distinguished between SM, GM, and junction genes responsible for reactions shared by SM and GM pathways, indicating that topological considerations may further improve the SM prediction model. Application of the prediction model led to the identification of 1,220 A. thaliana genes with previously unknown functions, each assigned a confidence measure called an SM score, providing a global estimate of SM gene content in a plant genome.
RESUMO
Pogostone, a compound with various pharmaceutical activities, is a major constituent of the essential oil preparation called Pogostemonis Herba, which is obtained from the plant Pogostemon cablin. The biosynthesis of pogostone has not been elucidated, but 4-methylvaleryl-CoA (4MVCoA) is a likely precursor. We analyzed the distribution of pogostone in P. cablin using gas chromatography-mass spectrometry (GC-MS) and found that pogostone accumulates at high levels in the main stems and leaves of young plants. A search for the acyl-activating enzyme (AAE) that catalyzes the formation of 4MVCoA from 4-methylvaleric acid was launched, using an RNAseq-based approach to identify 31 unigenes encoding putative AAEs including the PcAAE2, the transcript profile of which shows a strong positive correlation with the distribution pattern of pogostone. The protein encoded by PcAAE2 was biochemically characterized in vitro and shown to catalyze the formation of 4MVCoA from 4-methylvaleric acid. Phylogenetic analysis showed that PcAAE2 is closely related to other AAE proteins in P. cablin and other species that are localized to the peroxisomes. However, PcAAE2 lacks a peroxisome targeting sequence 1 (PTS1) and is localized in the cytosol.
Assuntos
Coenzima A Ligases/genética , Óleos Voláteis/metabolismo , Proteínas de Plantas/genética , Pogostemon/genética , Sequência de Aminoácidos , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pogostemon/metabolismo , Alinhamento de SequênciaRESUMO
Analysis of the updated reference tomato genome found 34 full-length TPS genes and 18 TPS pseudogenes. Biochemical analysis has now identified the catalytic activities of all enzymes encoded by the 34 TPS genes: one isoprene synthase, 10 exclusively or predominantly monoterpene synthases, 17 sesquiterpene synthases and six diterpene synthases. Among the monoterpene and sesquiterpene and diterpene synthases, some use trans-prenyl diphosphates, some use cis-prenyl diphosphates and some use both. The isoprene synthase is cytosolic; six monoterpene synthases are plastidic, and four are cytosolic; the sesquiterpene synthases are almost all cytosolic, with the exception of one found in the mitochondria; and three diterpene synthases are found in the plastids, one in the cytosol and two in the mitochondria. New trans-prenyltransferases (TPTs) were characterised; together with previously characterised TPTs and cis-prenyltransferases (CPTs), tomato plants can make all cis and trans C10 , C15 and C20 prenyl diphosphates. Every type of plant tissue examined expresses some TPS genes and some TPTs and CPTs. Phylogenetic comparison of the TPS genes from tomato and Arabidopsis shows expansions in each clade of the TPS gene family in each lineage (and inferred losses), accompanied by changes in subcellular localisations and substrate specificities.
Assuntos
Alquil e Aril Transferases , Solanum lycopersicum , Alquil e Aril Transferases/genética , Evolução Molecular , Solanum lycopersicum/genética , Monoterpenos , Filogenia , TerpenosRESUMO
The plant pyrethrum (Tanacetum cinerariifolium) synthesizes highly effective natural pesticides known as pyrethrins. Pyrethrins are esters consisting of an irregular monoterpenoid acid and an alcohol derived from jasmonic acid (JA). These alcohols, referred to as rethrolones, can be jasmolone, pyrethrolone, or cinerolone. We recently showed that jasmolone is synthesized from jasmone, a degradation product of JA, in a single hydroxylation step catalyzed by jasmone hydroxylase (TcJMH). TcJMH belongs to the CYP71 clade of the cytochrome P450 oxidoreductase family. Here, we used coexpression analysis, heterologous gene expression, and in vitro biochemical assays to identify the enzyme responsible for conversion of jasmolone to pyrethrolone. A further T cinerariifolium cytochrome P450 family member, CYP82Q3 (designated Pyrethrolone Synthase; TcPYS), appeared to catalyze the direct desaturation of the C1-C2 bond in the pentyl side chain of jasmolone to produce pyrethrolone. TcPYS is highly expressed in the trichomes of the ovaries in pyrethrum flowers, similar to TcJMH and other T cinerariifolium genes involved in JA biosynthesis. Thus, as previously shown for biosynthesis of the monoterpenoid acid moiety of pyrethrins, rethrolones are synthesized in the trichomes. However, the final assembly of pyrethrins occurs in the developing achenes. Our data provide further insight into pyrethrin biosynthesis, which could ultimately be harnessed to produce this natural pesticide in a heterologous system.
Assuntos
Chrysanthemum cinerariifolium/metabolismo , Piretrinas/metabolismo , Tanacetum/metabolismo , Ciclopentanos/metabolismo , Inseticidas/metabolismo , Oxigenases de Função Mista/metabolismo , Oxilipinas/metabolismoRESUMO
The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant-prokaryote comparative genomics detected candidates for 3-methylglutaconyl-CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non-homologous N-terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein-fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3-hydroxymethylglutaryl-CoA into 3-methylglutaconyl-CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark-induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3-methylglutaconyl-CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.
Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Hidroliases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Técnicas de Silenciamento de Genes , Hidroliases/genética , Isoleucina/metabolismo , Leucina/metabolismo , Metabolismo , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/genética , Alinhamento de Sequência , Valina/metabolismoRESUMO
In the natural pesticides known as pyrethrins, which are esters produced in flowers of Tanacetum cinerariifolium (Asteraceae), the monoterpenoid acyl moiety is pyrethric acid or chrysanthemic acid. We show here that pyrethric acid is produced from chrysanthemol in six steps catalyzed by four enzymes, the first five steps occurring in the trichomes covering the ovaries and the last one occurring inside the ovary tissues. Three steps involve the successive oxidation of carbon 10 (C10) to a carboxylic group by TcCHH, a cytochrome P450 oxidoreductase. Two other steps involve the successive oxidation of the hydroxylated carbon 1 to give a carboxylic group by TcADH2 and TcALDH1, the same enzymes that catalyze these reactions in the formation of chrysanthemic acid. The ultimate result of the actions of these three enzymes is the formation of 10-carboxychrysanthemic acid in the trichomes. Finally, the carboxyl group at C10 is methylated by TcCCMT, a member of the SABATH methyltransferase family, to give pyrethric acid. This reaction occurs mostly in the ovaries. Expression in N. benthamiana plants of all four genes encoding aforementioned enzymes, together with TcCDS, a gene that encodes an enzyme that catalyzes the formation of chrysanthemol, led to the production of pyrethric acid.
Assuntos
Inseticidas/análise , Nicotiana/metabolismo , Piretrinas/metabolismo , Vias Biossintéticas , Chrysanthemum cinerariifolium/química , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/química , Regulação da Expressão Gênica de Plantas , Metilação , Filogenia , Extratos Vegetais/química , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por SubstratoRESUMO
Pyrethrins are synthesized by the plant pyrethrum (Tanacetum cinerariifolium), a chrysanthemum relative. These compounds possess efficient insecticidal properties and are not toxic to humans and most vertebrates. Pyrethrum flowers, and to a smaller extent leaves, synthesize six main types of pyrethrins, which are all esters of a monoterpenoid acid moiety and an alcohol moiety derived from jasmonic acid. Here, we identified and characterized the enzyme responsible for the conversion of jasmone, a derivative of jasmonic acid, to jasmolone. Feeding pyrethrum flowers with jasmone resulted in a 4-fold increase in the concentration of free jasmolone as well as smaller but significant proportional increases in free pyrethrolone and all three type I pyrethrins. We used floral transcriptomic data to identify cytochrome P450 genes whose expression patterns were most highly correlated with that of a key gene in pyrethrin biosynthesis, T. cinerariifolium chrysanthemyl diphosphate synthase The candidate genes were screened for jasmone hydroxylase activity through transient expression in Nicotiana benthamiana leaves fed with jasmone. The expression of only one of these candidate genes produced jasmolone; therefore, this gene was named T. cinerariifolium jasmolone hydroxylase (TcJMH) and given the CYP designation CYP71AT148. The protein encoded by TcJMH localized to the endoplasmic reticulum, and microsomal preparations from N. benthamiana leaves expressing TcJMH were capable of catalyzing the hydroxylation of jasmone to jasmolone in vitro, with a Km value of 53.9 µm TcJMH was expressed almost exclusively in trichomes of floral ovaries and was induced in leaves by jasmonate.
Assuntos
Chrysanthemum cinerariifolium/metabolismo , Inseticidas/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Piretrinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Chrysanthemum cinerariifolium/genética , Ciclopentanos/metabolismo , Flores/efeitos dos fármacos , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/genética , Oxilipinas/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Nicotiana/genéticaRESUMO
Flowers of Tanacetum cinerariifolium produce a set of compounds known collectively as pyrethrins, which are commercially important pesticides that are strongly toxic to flying insects but not to most vertebrates. A pyrethrin molecule is an ester consisting of either trans-chrysanthemic acid or its modified form, pyrethric acid, and one of three alcohols, jasmolone, pyrethrolone, and cinerolone, that appear to be derived from jasmonic acid. Chrysanthemyl diphosphate synthase (CDS), the first enzyme involved in the synthesis of trans-chrysanthemic acid, was characterized previously and its gene isolated. TcCDS produces free trans-chrysanthemol in addition to trans-chrysanthemyl diphosphate, but the enzymes responsible for the conversion of trans-chrysanthemol to the corresponding aldehyde and then to the acid have not been reported. We used an RNA sequencing-based approach and coexpression correlation analysis to identify several candidate genes encoding putative trans-chrysanthemol and trans-chrysanthemal dehydrogenases. We functionally characterized the proteins encoded by these genes using a combination of in vitro biochemical assays and heterologous expression in planta to demonstrate that TcADH2 encodes an enzyme that oxidizes trans-chrysanthemol to trans-chrysanthemal, while TcALDH1 encodes an enzyme that oxidizes trans-chrysanthemal into trans-chrysanthemic acid. Transient coexpression of TcADH2 and TcALDH1 together with TcCDS in Nicotiana benthamiana leaves results in the production of trans-chrysanthemic acid as well as several other side products. The majority (58%) of trans-chrysanthemic acid was glycosylated or otherwise modified. Overall, these data identify key steps in the biosynthesis of pyrethrins and demonstrate the feasibility of metabolic engineering to produce components of these defense compounds in a heterologous host.
Assuntos
Vias Biossintéticas/genética , Chrysanthemum cinerariifolium/enzimologia , Chrysanthemum cinerariifolium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inseticidas/química , Monoterpenos/metabolismo , Oxirredutases/metabolismo , Piretrinas/química , Chrysanthemum cinerariifolium/genética , Flores/metabolismo , Genes de Plantas , Estudos de Associação Genética , Cinética , Oxirredutases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Piretrinas/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Terpenos/química , Terpenos/metabolismoRESUMO
BACKGROUND AND AIMS: The processes of gene duplication, followed by divergence and selection, probably underpin the evolution of floral volatiles crucial to plant-insect interactions. The Australian sexually deceptive Chiloglottis orchids use a class of 2,5-dialkylcyclohexan-1,3-dione volatiles or 'chiloglottones' to attract specific male wasp pollinators. Here, we explore the expression and evolution of fatty acid pathway genes implicated in chiloglottone biosynthesis. METHODS: Both Chiloglottis seminuda and C. trapeziformis produce chiloglottone 1, but only the phylogenetically distinct C. seminuda produces this volatile from both the labellum callus and glandular sepal tips. Transcriptome sequencing and tissue-specific contrasts of the active and non-active floral tissues was performed. The effects of the fatty acid synthase inhibitor cerulenin on chiloglottone production were tested. Patterns of selection and gene evolution were investigated for fatty acid pathway genes. KEY RESULTS: Tissue-specific differential expression of fatty acid pathway transcripts was evident between active and non-active floral tissues. Cerulenin significantly inhibits chiloglottone 1 production in the active tissues of C. seminuda. Phylogenetic analysis of plant ß-ketoacyl synthase I (KASI), a protein involved in fatty acid biosynthesis, revealed two distinct clades, one of which is unique to the Orchidaceae (KASI-2B). Selection analysis indicated a strong signal of positive selection at the split of KASI-2B followed by relaxed purifying selection in the Chiloglottis clade. CONCLUSIONS: By capitalizing on a phylogenetically distinct Chiloglottis from earlier studies, we show that the transcriptional and biochemical dynamics linked to chiloglottone biosynthesis in active tissues are conserved across Chiloglottis. A combination of tissue-specific expression and relaxed purifying selection operating at specific fatty acid pathway genes may hold the key to the evolution of chiloglottones.
Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase , Orchidaceae , Animais , Austrália , Flores , Masculino , Filogenia , PolinizaçãoRESUMO
Detrimental effects of hyperaccumulation of the aromatic amino acid phenylalanine (Phe) in animals, known as phenylketonuria, are mitigated by excretion of Phe derivatives; however, how plants endure Phe accumulating conditions in the absence of an excretion system is currently unknown. To achieve Phe hyperaccumulation in a plant system, we simultaneously decreased in petunia flowers expression of all three Phe ammonia lyase (PAL) isoforms that catalyze the non-oxidative deamination of Phe to trans-cinnamic acid, the committed step for the major pathway of Phe metabolism. A total decrease in PAL activity by 81-94% led to an 18-fold expansion of the internal Phe pool. Phe accumulation had multifaceted intercompartmental effects on aromatic amino acid metabolism. It resulted in a decrease in the overall flux through the shikimate pathway, and a redirection of carbon flux toward the shikimate-derived aromatic amino acids tyrosine and tryptophan. Accumulation of Phe did not lead to an increase in flux toward phenylacetaldehyde, for which Phe is a direct precursor. Metabolic flux analysis revealed this to be due to the presence of a distinct metabolically inactive pool of Phe, likely localized in the vacuole. We have identified a vacuolar cationic amino acid transporter (PhCAT2) that contributes to sequestering excess of Phe in the vacuole. In vitro assays confirmed PhCAT2 can transport Phe, and decreased PhCAT2 expression in PAL-RNAi transgenic plants resulted in 1.6-fold increase in phenylacetaldehyde emission. These results demonstrate mechanisms by which plants maintain intercompartmental aromatic amino acid homeostasis, and provide critical insight for future phenylpropanoid metabolic engineering strategies.
Assuntos
Fenilalanina/metabolismo , Ácido Chiquímico/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas/fisiologia , Redes e Vias Metabólicas/fisiologia , Petunia/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Plantas Geneticamente ModificadasRESUMO
The pyrethrum plant, Tanacetum cinerariifolium (Asteraceae) synthesizes a class of compounds called pyrethrins that have strong insecticidal properties but are safe to humans. Class I pyrethrins are esters of the monoterpenoid trans-chrysanthemic acid with one of three jasmonic-acid derived alcohols. We reconstructed the trans-chrysanthemic acid biosynthetic pathway in tomato fruits, which naturally produce high levels of the tetraterpene pigment lycopene, an isoprenoid which shares a common precursor, dimethylallyl diphosphate (DMAPP), with trans-chrysanthemic acid. trans-Chrysanthemic acid biosynthesis in tomato fruit was achieved by expressing the chrysanthemyl diphosphate synthase gene from T. cinerariifolium, encoding the enzyme that uses DMAPP to make trans-chrysanthemol, under the control of the fruit specific promoter PG, as well as an alcohol dehydrogenease (ADH) gene and aldehyde dehydrogenase (ALDH) gene from a wild tomato species, also under the control of the PG promoter. Tomato fruits expressing all three genes had a concentration of trans-chrysanthemic acid that was about 1.7-fold higher (by weight) than the levels of lycopene present in non-transgenic fruit, while the level of lycopene in the transgenic plants was reduced by 68%. Ninety seven percent of the diverted DMAPP was converted to trans-chrysanthemic acid, but 62% of this acid was further glycosylated. We conclude that the tomato fruit is an alternative platform for the biosynthesis of trans-chrysanthemic acid by metabolic engineering.
Assuntos
Chrysanthemum cinerariifolium/genética , Frutas , Inseticidas/metabolismo , Plantas Geneticamente Modificadas , Piretrinas/metabolismo , Solanum lycopersicum , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismoRESUMO
All plants synthesize a suite of several hundred terpenoid compounds with roles that include phytohormones, protein modification reagents, anti-oxidants, and more. Different plant lineages also synthesize hundreds of distinct terpenoids, with the total number of such specialized plant terpenoids estimated in the scores of thousands. Phylogenetically restricted terpenoids are implicated in defense or in the attraction of beneficial organisms. A popular hypothesis is that the ability of plants to synthesize new compounds arose incrementally by selection when, as a result of gradual changes in their biotic partners and enemies, the 'old' plant compounds were no longer effective, a process dubbed the 'coevolutionary arms race'. Another hypothesis posits that often the sheer diversity of such compounds provides benefits that a single compound cannot. In this article, we review the unique features of the biosynthetic apparatus of terpenes in plants that facilitate the production of large numbers of distinct terpenoids in each species and how facile genetic and biochemical changes can lead to the further diversification of terpenoids. We then discuss evidence relating to the hypotheses that given ecological functions may be enhanced by the presence of mixtures of terpenes and that the acquisition of new functions by terpenoids may favor their retention once the original functions are lost.
Assuntos
Plantas/metabolismo , Terpenos/metabolismo , Animais , Humanos , Filogenia , Simbiose , Terpenos/químicaRESUMO
Flavonoids are ubiquitous plant aromatic specialized metabolites found in a variety of cell types and organs. Methylated flavonoids are detected in secreting glandular trichomes of various Solanum species, including the cultivated tomato (Solanum lycopersicum). Inspection of the sequenced S. lycopersicum Heinz 1706 reference genome revealed a close homolog of Solanum habrochaites MOMT1 3'/5' myricetin O-methyltransferase gene, but this gene (Solyc06g083450) is missing the first exon, raising the question of whether cultivated tomato has a distinct 3' or 3'/5' O-methyltransferase. A combination of mining genome and cDNA sequences from wild tomato species and S. lycopersicum cultivar M82 led to the identification of Sl-MOMT4 as a 3' O-methyltransferase. In parallel, three independent ethyl methanesulfonate mutants in the S. lycopersicum cultivar M82 background were identified as having reduced amounts of di- and trimethylated myricetins and increased monomethylated myricetin. Consistent with the hypothesis that Sl-MOMT4 is a 3' O-methyltransferase gene, all three myricetin methylation defective mutants were found to have defects in MOMT4 sequence, transcript accumulation, or 3'-O-methyltransferase enzyme activity. Surprisingly, no MOMT4 sequence is found in the Heinz 1706 reference genome sequence, and this cultivar accumulates 3-methyl myricetin and is deficient in 3'-methyl myricetins, demonstrating variation in this gene among cultivated tomato varieties.
Assuntos
Flavonoides/genética , Variação Genética , Genoma de Planta , Metiltransferases/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , Flavonoides/biossíntese , Flavonoides/metabolismo , Solanum lycopersicum/enzimologia , Metiltransferases/química , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de ProteínaRESUMO
Dolichol plays an indispensable role in the N-glycosylation of eukaryotic proteins. As proteins enter the secretory pathway they are decorated by a 'glycan', which is preassembled onto a membrane-anchored dolichol molecule embedded within the endoplasmic reticulum (ER). Genetic and biochemical evidence in yeast and animals indicate that a cis-prenyltransferase (CPT) is required for dolichol synthesis, but also point to other factor(s) that could be involved. In this study, RNAi-mediated suppression of one member of the tomato CPT family (SlCPT3) resulted in a ~60% decrease in dolichol content. We further show that the involvement of SlCPT3 in dolichol biosynthesis requires the participation of a distantly related partner protein, designated as CPT-binding protein (SlCPTBP), which is a close homolog of the human Nogo-B receptor. Yeast two-hybrid and co-immunoprecipitation assays demonstrate that SlCPT3 and its partner protein interact in vivo and that both SlCPT3 and SlCPTBP are required to complement the growth defects and dolichol deficiency of the yeast dolichol mutant, rer2∆. Co-expression of SlCPT3 and SlCPTBP in yeast and in E. coli confirmed that dolichol synthase activity strictly requires both proteins. Finally, organelle isolation and in vivo localization of fluorescent protein fusions showed that both SlCPT3 and SlCPTBP localize to the ER, the site of dolichol accumulation and synthesis in eukaryotes.
Assuntos
Dolicóis/biossíntese , Complexos Multienzimáticos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Dimetilaliltranstransferase/genética , Retículo Endoplasmático/metabolismo , Escherichia coli/genética , Evolução Molecular , Teste de Complementação Genética , Solanum lycopersicum/genética , Complexos Multienzimáticos/genética , Proteínas de Plantas/genética , Interferência de RNA , Receptores de Superfície Celular/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transferases/genética , Transferases/metabolismoRESUMO
Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms.
Assuntos
Alquil e Aril Transferases/genética , Laurus/enzimologia , Terpenos/metabolismo , Alquil e Aril Transferases/metabolismo , Sequência de Bases , Cicloexanóis/metabolismo , DNA Complementar/genética , Eucaliptol , Evolução Molecular , Genes Reporter , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Laurus/química , Laurus/genética , Modelos Moleculares , Dados de Sequência Molecular , Monoterpenos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/química , RNA de Plantas/genética , Proteínas Recombinantes , Análise de Sequência de RNARESUMO
Functional gene clusters, containing two or more genes encoding different enzymes for the same pathway, are sometimes observed in plant genomes, most often when the genes specify the synthesis of specialized defensive metabolites. Here, we show that a cluster of genes in tomato (Solanum lycopersicum; Solanaceae) contains genes for terpene synthases (TPSs) that specify the synthesis of monoterpenes and diterpenes from cis-prenyl diphosphates, substrates that are synthesized by enzymes encoded by cis-prenyl transferase (CPT) genes also located within the same cluster. The monoterpene synthase genes in the cluster likely evolved from a diterpene synthase gene in the cluster by duplication and divergence. In the orthologous cluster in Solanum habrochaites, a new sesquiterpene synthase gene was created by a duplication event of a monoterpene synthase followed by a localized gene conversion event directed by a diterpene synthase gene. The TPS genes in the Solanum cluster encoding cis-prenyl diphosphate-utilizing enzymes are closely related to a tobacco (Nicotiana tabacum; Solanaceae) diterpene synthase encoding Z-abienol synthase (Nt-ABS). Nt-ABS uses the substrate copal-8-ol diphosphate, which is made from the all-trans geranylgeranyl diphosphate by copal-8-ol diphosphate synthase (Nt-CPS2). The Solanum gene cluster also contains an ortholog of Nt-CPS2, but it appears to encode a nonfunctional protein. Thus, the Solanum functional gene cluster evolved by duplication and divergence of TPS genes, together with alterations in substrate specificity to utilize cis-prenyl diphosphates and through the acquisition of CPT genes.