RESUMO
Recently, the protective and/or pathological role of virus-specific T cells in SARS-CoV-2 infection has been the focus of many studies. We investigated the anti-spike IgG levels and SARS-CoV-2-specific T cells in 125 donors (90 vaccinated with four different vaccine platforms, 16 individuals with a previous natural infection, and 19 not vaccinated donors who did not report previous SARS-CoV-2 infections). Our data show that anti-spike IgG titers were similar between naturally infected subjects and those vaccinated with adenoviral vector vaccines. Of note, all immunized donors produced memory CD4+ and/or CD8+ T cells. A sustained polyfunctionality of SARS-CoV-2-specific T cells in all immunized donors was also demonstrated. Altogether, our data suggest that the natural infection produces an overall response like that induced by vaccination. Therefore, this detailed immunological evaluation may be relevant for other vaccine efforts especially for the monitoring of novel vaccines effective against emerging virus variants.
Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , SARS-CoV-2 , VacinaçãoRESUMO
Allergic reactions to COVID-19 vaccine components are rare but should be considered. Polyethylene glycol (PEG) is responsible for anaphylaxis in mRNA vaccines. Skin tests have been used in the allergological work-up programs for COVID-19 vaccine evaluation. However, the reproducibility of the skin prick test is time-dependent and the reactivity declines over time. Therefore, we combined the administration of the skin tests with the basophil activation test (BAT) using PEG2000, PEG4000 and DMG-PEG2000, where the BAT was considered positive when the percentage of activated basophils was higher than 6%, 5% and 6.5%, for PEG 4000, PEG2000 and DMG-PEG2000, respectively. To this end, among the subjects that underwent allergy counseling at the Allergy Unit of our Institution during the 2020/2021 vaccination campaign, 13 patients had a suggested medical history of PEG/drug hypersensitivity and were enrolled together with 10 healthy donors. Among the enrolled patients 2 out of 13 tested patients were positive to the skin test. The BAT was negative in terms of the percentages of activated basophils in all analyzed samples, but the stimulation index (SI) was higher than 2.5 in 4 out of 13 patients. These data evidenced that, when the SI is higher than 2.5, even in the absence of positivity to BAT, the BAT to PEG may be a useful tool to be coupled to skin tests to evidence even low-grade reactions.
Assuntos
Anafilaxia , COVID-19 , Hipersensibilidade , Humanos , Teste de Degranulação de Basófilos , Vacinas contra COVID-19 , Reprodutibilidade dos Testes , Basófilos , Hipersensibilidade/diagnóstico , Testes Cutâneos , Polietilenoglicóis/efeitos adversosRESUMO
Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.
Assuntos
Biomarcadores/metabolismo , Doença/genética , Vesículas Extracelulares/metabolismo , Comunicação Celular , Vesículas Extracelulares/genética , Predisposição Genética para Doença , Humanos , Imunidade , Transdução de SinaisRESUMO
Extracellular vesicles (EVs) are released by shedding during different physiological processes and are increasingly thought to be new potential biomarkers. However, the impact of pre-analytical processing phases on the final measurement is not predictable and for this reason, the translation of basic research into clinical practice has been precluded. Here we have optimized a simple procedure in combination with polychromatic flow cytometry (PFC), to identify, classify, enumerate, and separate circulating EVs from different cell origins. This protocol takes advantage of a lipophilic cationic dye (LCD) able to probe EVs. Moreover, the application of the newly optimized PFC protocol here described allowed the obtainment of repeatable EVs counts. The translation of this PFC protocol to fluorescence-activated cell sorting allowed us to separate EVs from fresh peripheral blood samples. Sorted EVs preparations resulted particularly suitable for proteomic analyses, which we applied to study their protein cargo. Here we show that LCD staining allowed PFC detection and sorting of EVs from fresh body fluids, avoiding pre-analytical steps of enrichment that could impact final results. Therefore, LCD staining is an essential step towards the assessment of EVs clinical significance.
Assuntos
Biomarcadores , Vesículas Extracelulares/metabolismo , Citometria de Fluxo , Biópsia Líquida , Animais , Citometria de Fluxo/métodos , Humanos , Biópsia Líquida/métodos , Tamanho da Partícula , Plasma , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Extracellular vesicles (EVs) play a crucial role in the intercellular crosstalk. Mesenchymal stem cell-derived EVs (MSC-EVs), displaying promising therapeutic roles, contribute to the strong rationale for developing EVs as an alternative therapeutic option. EV analysis still represents one of the major issues to be solved in order to translate the use of MSC-EV detection in clinical settings. Even if flow cytometry (FC) has been largely applied for EV studies, the lack of consensus on protocols for FC detection of EVs generated controversy. Standard FC procedures, based on scatter measurements, only allows the detection of the "tip of the iceberg" of all EVs. We applied an alternative FC approach based on the use of a trigger threshold on a fluorescence channel. The EV numbers obtained by the application of the fluorescence triggering resulted significantly higher in respect to them obtained from the same samples acquired by placing the threshold on the side scatter (SSC) channel. The analysis of EV concentrations carried out by three different standardized flow cytometers allowed us to achieve a high level of reproducibility (CV < 20%). By applying the here-reported method highly reproducible results in terms of EV analysis and concentration measurements were obtained.
Assuntos
Vesículas Extracelulares/metabolismo , Citometria de Fluxo/métodos , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Difusão Dinâmica da Luz , Separação Imunomagnética , Células-Tronco Mesenquimais/metabolismoRESUMO
BACKGROUND/AIMS: Mesenchymal stem cells from human amniotic fluid (huAFMSCs) can differentiate into multiple lineages and are not tumorigenic after transplantation, making them good candidates for therapeutic purposes. The aim was to determine the effects of calcitonin on these huAFMSCs during osteogenic differentiation, in terms of the physiological role of calcitonin in bone homeostasis. METHODS: For huAFMSCs cultured under different conditions, we assayed: expression of the calcitonin receptor, using immunolabelling techniques; proliferation and osteogenesis, using colorimetric and enzymatic assays; intracellular Ca(2+) and cAMP levels, using videomicroscopy and spectrophotometry. RESULTS: The calcitonin receptor was expressed in proliferating and osteo-differentiated huAFMSCs. Calcitonin triggered intracellular Ca(2+) increases and cAMP production. Its presence in cell medium also induced dose-dependent inhibitory effects on proliferation and increased osteogenic differentiation of huAFMSCs, as also indicated by enhancement of specific markers and alkaline phosphatase activity. CONCLUSIONS: These data show that huAFMSCs represent a potential osteogenic model to study in-vitro cell responses to calcitonin (and other members of the calcitonin family). This leads the way to the opening of new lines of research that will add new insight both in cell therapies and in the pharmacological use of these molecules.
Assuntos
Líquido Amniótico/citologia , Calcitonina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Líquido Amniótico/efeitos dos fármacos , Líquido Amniótico/metabolismo , Biomarcadores/metabolismo , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Gravidez , Receptores da Calcitonina/metabolismoRESUMO
BACKGROUND/AIMS: Extracellular GTP is able to modulate some specific functions in neuron, glia and muscle cell models as it has been demonstrated over the last two decades. In fact, extracellular GTP binds its specific plasma membrane binding sites and induces signal transduction via [Ca(2+)]i increase. We demonstrate, for the first time, that extracellular GTP is able to modulate cell swelling in M1-CCD cortical collecting duct epithelial cells via upregulation of aquaporin 5 (AQP5) expression. METHODS: We used videoimaging, immunocitochemistry, flow cytometry, confocal techniques, Western blotting and RT-PCR for protein and gene expression analysis, respectively. RESULTS: We demonstrate that AQP5 mRNA is up-regulated 7 h after the GTP exposure in the cell culture medium, and its protein level is increased after 12-24 h. We show that AQP5 is targeted to the plasma membrane of M1-CCD cells, where it facilitates cell swelling, and that the GTP-dependent AQP5 up-regulation occurs via [Ca(2+)]i increase. Indeed, GTP induces both oscillating and transient [Ca(2+)]i increase, and specifically the oscillating kinetic appears to be responsible for blocking cell cycle in the S-phase while the [Ca(2+)]i influx, with whatever kinetic, seems to be responsible for inducing AQP5 expression. CONCLUSION: The role of GTP as a regulator of AQP5-mediated water transport in renal cells is of great importance in the physiology of renal epithelia, due to its possible physiopathological implications. GTP-dependent AQP5 expression could act as osmosensor. In addition, the data presented here suggest that GTP might play the same role in other tissues where rapid water transport is required for cell volume regulation and maintenance of the homeostasis.
Assuntos
Aquaporina 5/biossíntese , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Guanosina Trifosfato/farmacologia , Túbulos Renais Coletores/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/citologia , Túbulos Renais Coletores/citologia , CamundongosRESUMO
Breast cancer represents the second cause of death in the European female population. The lack of specific therapies together with its high invasive potential are the major problems associated to such a tumor. In the last three decades platinum-based drugs have been considered essential constituents of many therapeutic strategies, even though with side effects and frequent generation of drug resistance. These drugs have been the guide for the research, in last years, of novel platinum and ruthenium based compounds, able to overcome these limitations. In this work, ruthenium and platinum based phthalocyanines were synthesized through conventional techniques and their antiproliferative and/or cytotoxic actions were tested. Normal mammary gland (MCF10A) and several models of mammarian carcinoma at different degrees of invasiveness (BT474, MCF-7 and MDA-MB-231) were used. Cells were treated with different concentrations (5-100 µM) of the above reported compounds, to evaluate toxic concentration and to underline possible dose-response effects. The study included growth curves made by trypan blue exclusion test and scratch assay to study cellular motility and its possible negative modulation by phthalocyanine. Moreover, we investigated cell cycle and apoptosis through flow cytometry and AMNIS Image Stream cytometer. Among all the tested drugs, tetrasulfonated phthalocyanine of platinum resulted to be the molecule with the best cytostatic action on neoplastic cell lines at the concentration of 30 µM. Interestingly, platinum tetrasulfophtalocyanine, at low doses, had no antiproliferative effects on normal cells. Therefore, such platinum complex, appears to be a promising drug for mammarian carcinoma treatment.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Indóis/farmacologia , Compostos Organoplatínicos/farmacologia , Água/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/química , Indóis/metabolismo , Células MCF-7 , Compostos Organoplatínicos/química , Compostos Organoplatínicos/metabolismo , SolubilidadeRESUMO
Adipose-derived stem cells (ADSCs) hold promise for tendon repair, even if their tenogenic plasticity and underlying mechanisms remain only partially understood, particularly in cells derived from the ovine animal model. This study aimed to characterize oADSCs during in vitro expansion to validate their phenotypic properties pre-transplantation. Moreover, their tenogenic potential was assessed using two in vitro-validated approaches: (1) teno-inductive conditioned media (CM) derived from a co-culture between ovine amniotic stem cells and fetal tendon explants, and (2) short- (48 h) and long-term (14 days) seeding on highly aligned PLGA (ha-PLGA) electrospun scaffold. Our findings indicate that oADSCs can be expanded without senescence and can maintain the expression of stemness (Sox2, Oct4, Nanog) and mesenchymal (CD29, CD166, CD44, CD90) markers while remaining negative for hematopoietic (CD31, CD45) and MHC-II antigens. Of note, oADSCs' tendon differentiation potential greatly depended on the in vitro strategy. oADSCs exposed to CM significantly upregulated tendon-related genes (COL1, TNMD, THBS4) but failed to accumulate TNMD protein at 14 days of culture. Conversely, oADSCs seeded on ha-PLGA fleeces quickly upregulated the tendon-related genes (48 h) and in 14 days accumulated high levels of the TNMD protein into the cytoplasm of ADSCs, displaying a tenocyte-like morphology. This mechano-sensing cellular response involved a complete SOX9 downregulation accompanied by YAP activation, highlighting the efficacy of biophysical stimuli in promoting tenogenic differentiation. These findings underscore oADSCs' long-term self-renewal and tendon differentiative potential, thus opening their use in a preclinical setting to develop innovative stem cell-based and tissue engineering protocols for tendon regeneration, applied to the veterinary field.
RESUMO
BACKGROUND: It has been demonstrated that the umbilical cord matrix, represented by the Wharton's Jelly (WJ), contains a great number of mesenchymal stem cells (MSCs), characterized by the expression of specific MSCs markers, shared by both human and animal models. The easy access to massive WJ amount makes it an attractive source of MSCs for cell-based therapies. However, as in other stem cell models, a deeper investigation of WJ-derived MSCs (WJ-MSCs) biological properties, probably modulated by their prolonged expansion and fast growth abilities, is required before their use in clinical settings. In this context, in order to analyze specific gene expression modifications occurring in WJ-MSCs, along with their culture prolongation, we investigated the transcriptomic profiles of WJ-MSCs after 4 and 12 passages of in vitro expansion by microarray analysis. RESULTS: Hierarchical clustering analysis of the data set originated from a total of 6 experiments revealed that in vitro expansion of WJ-MSCs up to 12 passages promote selective over-expression of 157 genes and down-regulation of 440 genes compared to the 4th passage. IPA software analysis of the biological functions related to the identified sets of genes disclosed several transcripts related to inflammatory and cell stress response, cell proliferation and maturation, and apoptosis. CONCLUSIONS: Taken together, these modifications may lead to an impairment of both cell expansion ability and resistance to apoptosis, two hallmarks of aging cells. In conclusion, results provided by the present study suggest the need to develop novel culture protocols able to preserve stem cell plasticity.
Assuntos
Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Transcriptoma , Geleia de Wharton/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Análise por Conglomerados , HumanosRESUMO
(1) Background: Obesity, a complex metabolic disease resulting from an imbalance between food consumption and energy expenditure, leads to an increase in adipocytes and chronic inflammatory conditions. The aim of this paper was to synthesize a small series of carvacrol derivatives (CD1-3) that are able to reduce both adipogenesis and the inflammatory status often associated with the progression of the obesity disease. (2) Methods: The synthesis of CD1-3 was performed using classical procedures in a solution phase. Biological studies were performed on three cell lines: 3T3-L1, WJ-MSCs, and THP-1. The anti-adipogenic properties of CD1-3 were evaluated using western blotting and densitometric analysis by assessing the expression of obesity-related proteins, such as ChREBP. The anti-inflammatory effect was estimated by measuring the reduction in TNF-α expression in CD1-3-treated THP-1 cells. (3) Results: CD1-3-obtained through a direct linkage between the carboxylic moiety of anti-inflammatory drugs (Ibuprofen, Flurbiprofen, and Naproxen) and the hydroxyl group of carvacrol-have an inhibitory effect on the accumulation of lipids in both 3T3-L1 and WJ-MSCs cell cultures and an anti-inflammatory effect by reducing TNF- α levels in THP-1 cells. (4) Conclusions: Considering the physicochemical properties, stability, and biological data, the CD3 derivative-obtained by a direct linkage between carvacrol and naproxen-resulted in the best candidate, displaying anti-obesity and anti-inflammatory effects in vitro.
RESUMO
A phylogenetic conservation analysis of Trop-2 across vertebrate species showed a high degree of sequence conservation, permitting to explore multiple models as pre-clinical benchmarks. Sequence divergence and incomplete conservation of expression patterns were observed in mouse and rat. Primate Trop-2 sequences were found to be 95%-100% identical to the human sequence. Comparative three-dimension primate Trop-2 structures were obtained with AlphaFold and homology modeling. This revealed high structure conservation of Trop-2 (0.66 ProMod3 GMQE, 0.80-0.86 ± 0.05 QMEANDisCo scores), with conservative amino acid changes at variant sites. Primate TACSTD2/TROP2 cDNAs were cloned and transfectants for individual ORF were shown to be efficiently recognized by humanized anti-Trop-2 monoclonal antibodies (Hu2G10, Hu2EF). Immunohistochemistry analysis of Macaca mulatta (rhesus monkey) tissues showed Trop-2 expression patterns that closely followed those in human tissues. This led us to test Trop-2 targeting in vivo in Macaca fascicularis (cynomolgus monkey). Intravenously injected Hu2G10 and Hu2EF were well tolerated from 5 to 10 mg/kg. Neither neurological, respiratory, digestive, urinary symptoms, nor biochemical or hematological toxicities were detected during 28-day observation. Blood serum pharmacokinetic (PK) studies were conducted utilizing anti-idiotypic antibodies in capture-ELISA assays. Hu2G10 (t1/2 = 6.5 days) and Hu2EF (t1/2 = 5.5 days) were stable in plasma, and were detectable in the circulation up to 3 weeks after the infusion. These findings validate primates as reliable models for Hu2G10 and Hu2EF toxicity and PK, and support the use of these antibodies as next-generation anti-Trop-2 immunotherapy tools.
RESUMO
We set out to characterize stemness properties and osteogenic potential of sheep AEC (amniotic epithelial cells). AEC were isolated from 3-month-old fetuses and expanded in vitro for 12 passages. The morphology, surface markers, stemness markers and osteogenic differentiation were inspected after 1, 6 and 12 passages of expansion, with an average doubling time of 24 h. AEC clearly expressed the stemness markers Oct-3/4 (octamer-binding protein-3/4), Nanog, Sox2 and TERT (telomerase reverse transcriptase) and displayed low levels of global DNA methylation. Culture had moderate effects on cell conditions; some adhesion molecules progressively disappeared from the cell surface, and the expression of Sox2 and TERT was slightly reduced while Nanog increased. No changes occurred in the levels of DNA methylation. Cells organized in 3D spheroids were used for IVD (in vitro differentiation). Within these structures the cells developed a complex intercellular organization that involved extensive intercellular coupling despite continuous cell migration. Marked deposition of calcein in the ECM (extracellular matrix), increased ALP (alkaline phosphatase) activity, expression of bone-related genes (osteocalcin) and the matrix mineralization shown by Alizarin Red staining demonstrate that AEC can undergo rapid and extensive osteogenic differentiation. AEC introduced in experimental bone lesions survived in the site of implantation for 45 days and supported consistent bone neoformation, thus showing promising potential applications in osteogenic regenerative medicine.
Assuntos
Âmnio/citologia , Células Epiteliais/citologia , Osteogênese , Fosfatase Alcalina/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular , Metilação de DNA , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Osteocalcina/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Ovinos , Telomerase/metabolismoRESUMO
Extracellular vesicles (EVs) are a class of circulating entities that are involved in intercellular crosstalk mechanisms, participating in homeostasis maintenance, and diseases. Celiac disease is a gluten-triggered immune-mediated disorder, characterized by the inflammatory insult of the enteric mucosa following local lymphocytic infiltration, resulting in villous atrophy. The goal of this research was the assessment and characterization of circulating EVs in celiac disease patients, as well as in patients already on an adequate gluten-free regimen (GFD). For this purpose, a novel and validated technique based on polychromatic flow cytometry that allowed the identification and enumeration of different EV sub-phenotypes was applied. The analysis evidenced that the total, annexin V+, leukocyte (CD45+), and platelet (CD41a+) EV counts were significantly higher in both newly diagnosed celiac disease patients and patients under GFD compared with the healthy controls. Endothelial-derived (CD31+) and epithelial-derived (EpCAM+) EV counts were significantly lower in subjects under gluten exclusion than in celiac disease patients, although EpCAM+ EVs maintained higher counts than healthy subjects. The numbers of EpCAM+ EVs were a statistically significant predictor of intraepithelial leukocytes (IEL). These data demonstrate that EVs could represent novel and potentially powerful disease-specific biomarkers in the context of celiac disease.
Assuntos
Doença Celíaca , Vesículas Extracelulares , Humanos , Doença Celíaca/diagnóstico , Molécula de Adesão da Célula Epitelial , Glutens , Intestino Delgado , Dieta Livre de GlútenRESUMO
The efficacy of SARS-CoV-2 mRNA-based vaccines in preventing COVID-19 disease has been extensively demonstrated; however, it is of uttermost importance to acquire knowledge on the persistence of immune-protection both in terms of levels of neutralizing antibodies and specialized memory cells. This can provide important scientific basis for decisions on the need of additional vaccine doses and on when these should be administered thus resulting in an improvement in vaccination schedules. Here, we briefly report the changes in antibody levels and cellular immunity following BNT162b2 administration. We show an important fall in anti S1-Spike antibodies in BNT162b2 vaccinated subjects overtime, paralleled by a contextual consolidation of specific spike (S) T-cells, mainly of the CD8+ compartment. Contrariwise, CD4+ S-specific response shows a considerable interindividual variability. These data suggest that the well-known antibody drop in vaccinated subjects is replaced by memory cell consolidation that can protect from severe adverse effects of SARS-CoV-2 infection.
RESUMO
COVID-19 pandemic has hit people's health, economy, and society worldwide. Great confidence in returning to normality has been placed in the vaccination campaign. The knowledge of individual immune profiles and the time required to achieve immunological protection is crucial to choose the best vaccination strategy. We compared anti-S1 antibody levels produced over time by BNT162b2 and AZD1222 vaccines and evaluated the induction of antigen-specific T-cells. A total of 2569 anti-SARS-CoV-2 IgG determination on dried blood spot samples were carried out, firstly in a cohort of 1181 individuals at random time-points, and subsequently, in an independent cohort of 88 vaccinated subjects, up to the seventeenth week from the first dose administration. Spike-specific T-cells were analysed in seronegative subjects between the two doses. AZD1222 induced lower anti-S1 IgG levels as compared to BNT162b2. Moreover, 40% of AZD1222 vaccinated subjects and 3% of BNT162b2 individuals resulted in seronegative during all the time-points, between the two doses. All these subjects developed antigen-specific T cells, already after the first dose. These results suggest that this test represents an excellent tool for a wide sero-surveillance. Both vaccines induce a favourable immune profile guaranteeing efficacy against severe adverse effects of SARS-CoV-2 infection, already after the first dose administration.
RESUMO
BACKGROUND: The human umbilical cord contains mucoid connective tissue and fibroblast-like cells. These cells named Wharton's jelly cells, (WJCs) display properties similar to mesenchymal stem cells therefore representing a rich source of primitive cells to be potentially used in regenerative medicine. RESULTS: To better understand their self-renewal and potential in vitro expansion capacity, a reference 2D map was constructed as a proteomic data set. 158 unique proteins were identified. More than 30% of these proteins belong to cytoskeleton compartment. We also found that several proteins including Shootin1, Adenylate kinase 5 isoenzyme and Plasminogen activator-inhibitor 2 are no longer expressed after the 2nd passage of in vitro replication. This indicates that the proliferative potency of these cells is reduced after the initial stage of in vitro growing. At the end of cellular culturing, new synthesized proteins, including, ERO1-like protein alpha, Aspartyl-tRNA synthetase and Prolyl-4-hydroxylase were identified. It is suggested that these new synthesized proteins are involved in the impairment of cellular surviving during replication and differentiation time. CONCLUSIONS: Our work represents an essential step towards gaining knowledge of the molecular properties of WJCs so as to better understand their possible use in the field of cell therapy and regenerative medicine.
RESUMO
In the pathophysiology of neurodegenerative disorders, the role of misfolded protein deposition leading to neurodegeneration has been primarily discussed. In the last decade, however, it has been proposed a parallel involvement of innate immune activation, chronic inflammation and adaptive immunity in the neurodegeneration mechanisms triggered by proteinopathies. New insights in the neurodegenerative field strongly suggest a role for the immune system in the pathophysiology of neurodegenerative disorders. Therefore, the hypothesis underlining the modulation of the innate and the adaptive immune system in the events linked to brain deposition of misfolded proteins could open new perspectives in the setting of specific immunotherapeutic strategies for the treatment of neurodegenerative diseases. Therefore, we have reviewed the pathogenic hypothesis in neurodegenerative pathologies, underling the links between the deposition of misfolded protein mechanisms and the immune activation.
RESUMO
BACKGROUND: Bleomycin, etoposide and cisplatin (BEP) are three chemotherapeutic agents widely used individually or in combination with each other or other chemotherapeutic agents in the treatment of various cancers. These chemotherapeutic agents are cytotoxic; hence, along with killing cancerous cells, they also damage stem cell pools in the body, which causes various negative effects on patients. The epigenetic changes due to the individual action of BEP on stem cells are largely unknown. METHODS: Human amniotic fluid stem cells (hAFSCs) were treated with our in-vitro standardized dosages of BEP individually, for seven days. The cells were harvested after the treatment and extraction of DNA and RNA were performed. Real-time PCR and flow cytometry were conducted for cell markers analysis. The global DNA methylation was quantified using 5mC specific kit and promoter and CpG methylation % through bisulfite conversion and pyrosequencing. Micro- RNAs (miRNAs) were quantified with real-time qPCR. RESULTS: The cytotoxic nature of BEP was observed even at low dosages throughout the experiment. We also investigated the change in the expression of various pluripotent and germline markers and found a significant change in the properties of the cells after the treatments. The methylation of DNA at global, promoter and individual CpG levels largely get fluctuated due to the BEP treatment. Several tested miRNAs showed differential expression. No positive correlation between mRNA and protein expression was observed for some markers. CONCLUSION: Cytotoxic chemotherapeutic agents such as BEP were found to alter stem cell properties of hAFSCs. Different methylation profiles change dynamically, which may explain such changes in cellular properties. Data also suggests that the fate of hAFSCs after treatment may depend upon the interplay between the miRNAs. Finally, our results demonstrate that hAFSCs might prove to be a suitable in-vitro model of stem cells to predict genetic and epigenetic modification due to the action of various drugs.