Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; 110(12): e16265, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38102863

RESUMO

PREMISE: Increased aridity and drought associated with climate change are exerting unprecedented selection pressures on plant populations. Whether populations can rapidly adapt, and which life history traits might confer increased fitness under drought, remain outstanding questions. METHODS: We utilized a resurrection ecology approach, leveraging dormant seeds from herbarium collections to assess whether populations of Plantago patagonica from the semi-arid Colorado Plateau have rapidly evolved in response to approximately ten years of intense drought in the region. We quantified multiple traits associated with drought escape and drought resistance and assessed the survival of ancestors and descendants under simulated drought. RESULTS: Descendant populations displayed a significant shift in resource allocation, in which they invested less in reproductive tissues and relatively more in both above- and below-ground vegetative tissues. Plants with greater leaf biomass survived longer under terminal drought; moreover, even after accounting for the effect of increased leaf biomass, descendant seedlings survived drought longer than their ancestors. CONCLUSIONS: Our results document rapid adaptive evolution in response to climate change in a selfing annual and suggest that shifts in tissue allocation strategies may underlie adaptive responses to drought in arid or semi-arid environments. This work also illustrates a novel approach, documenting that under specific circumstances, seeds from herbarium specimens may provide an untapped source of dormant propagules for future resurrection experiments.


Assuntos
Resistência à Seca , Características de História de Vida , Adaptação Fisiológica , Secas , Plantas , Sementes
2.
Am J Bot ; 109(10): 1529-1544, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36129014

RESUMO

PREMISE: Variation in seed and seedling traits underlies how plants interact with their environment during establishment, a crucial life history stage. We quantified genetic-based variation in seed and seedling traits in populations of the annual plant Plantago patagonica across a natural aridity gradient, leveraging natural intraspecific variation to predict how populations might evolve in response to increasing aridity associated with climate change in the Southwestern U.S. METHODS: We quantified seed size, seed size variation, germination timing, and specific leaf area in a greenhouse common garden, and related these traits to the climates of source populations. We then conducted a terminal drought experiment to determine which traits were most predictive of survival under early-season drought. RESULTS: All traits showed evidence of clinal variation-seed size decreased, germination timing accelerated, and specific leaf area increased with increasing aridity. Populations with more variable historical precipitation regimes showed greater variation in seed size, suggestive of past selection shaping a diversified bet-hedging strategy mediated by seed size. Seedling height, achieved via larger seeds or earlier germination, was a significant predictor of survival under drought. CONCLUSIONS: We documented substantial interspecific trait variation as well as clinal variation in several important seed and seedling traits, yet these slopes were often opposite to predictions for how individual traits might confer drought tolerance. This work shows that plant populations may adapt to increasing aridity via correlated trait responses associated with alternative life history strategies, but that trade-offs might constrain adaptive responses in individual traits.


Assuntos
Mudança Climática , Plântula , Plântula/genética , Germinação/fisiologia , Sementes/genética , Adaptação Fisiológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa