Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Blood ; 141(8): 917-929, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36356299

RESUMO

Mutant calreticulin (CALR) proteins resulting from a -1/+2 frameshifting mutation of the CALR exon 9 carry a novel C-terminal amino acid sequence and drive the development of myeloproliferative neoplasms (MPNs). Mutant CALRs were shown to interact with and activate the thrombopoietin receptor (TpoR/MPL) in the same cell. We report that mutant CALR proteins are secreted and can be found in patient plasma at levels up to 160 ng/mL, with a mean of 25.64 ng/mL. Plasma mutant CALR is found in complex with soluble transferrin receptor 1 (sTFR1) that acts as a carrier protein and increases mutant CALR half-life. Recombinant mutant CALR proteins bound and activated the TpoR in cell lines and primary megakaryocytic progenitors from patients with mutated CALR in which they drive thrombopoietin-independent colony formation. Importantly, the CALR-sTFR1 complex remains functional for TpoR activation. By bioluminescence resonance energy transfer assay, we show that mutant CALR proteins produced in 1 cell can specifically interact in trans with the TpoR on a target cell. In comparison with cells that only carry TpoR, cells that carry both TpoR and mutant CALR are hypersensitive to exogenous mutant CALR proteins and respond to levels of mutant CALR proteins similar to those in patient plasma. This is consistent with CALR-mutated cells that expose TpoR carrying immature N-linked sugars at the cell surface. Thus, secreted mutant CALR proteins will act more specifically on the MPN clone. In conclusion, a chaperone, CALR, can turn into a rogue cytokine through somatic mutation of its encoding gene.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Citocinas/metabolismo , Calreticulina/genética , Transtornos Mieloproliferativos/genética , Mutação , Fatores Imunológicos , Janus Quinase 2/genética
2.
Blood ; 135(4): 287-292, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31697803

RESUMO

The single transmembrane domain (TMD) of the human thrombopoietin receptor (TpoR/myeloproliferative leukemia [MPL] protein), encoded by exon 10 of the MPL gene, is a hotspot for somatic mutations associated with myeloproliferative neoplasms (MPNs). Approximately 6% and 14% of JAK2 V617F- essential thrombocythemia and primary myelofibrosis patients, respectively, have "canonical" MPL exon 10 driver mutations W515L/K/R/A or S505N, which generate constitutively active receptors and consequent loss of Tpo dependence. Other "noncanonical" MPL exon 10 mutations have also been identified in patients, both alone and in combination with canonical mutations, but, in almost all cases, their functional consequences and relevance to disease are unknown. Here, we used a deep mutational scanning approach to evaluate all possible single amino acid substitutions in the human TpoR TMD for their ability to confer cytokine-independent growth in Ba/F3 cells. We identified all currently recognized driver mutations and 7 novel mutations that cause constitutive TpoR activation, and a much larger number of second-site mutations that enhance S505N-driven activation. We found examples of both of these categories in published and previously unpublished MPL exon 10 sequencing data from MPN patients, demonstrating that some, if not all, of the new mutations reported here represent likely drivers or modifiers of myeloproliferative disease.


Assuntos
Substituição de Aminoácidos , Transtornos Mieloproliferativos/genética , Receptores de Trombopoetina/genética , Animais , Linhagem Celular , Éxons , Humanos , Camundongos , Modelos Moleculares , Mutação , Domínios Proteicos , Receptores de Trombopoetina/química
3.
Blood ; 135(2): 133-144, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31697806

RESUMO

Approximately one-fourth of patients with essential thrombocythemia or primary myelofibrosis carry a somatic mutation of the calreticulin gene (CALR), the gene encoding for calreticulin. A 52-bp deletion (type I mutation) and a 5-bp insertion (type II mutation) are the most frequent genetic lesions. The mechanism(s) by which a CALR mutation leads to a myeloproliferative phenotype has been clarified only in part. We studied the interaction between calreticulin and store-operated calcium (Ca2+) entry (SOCE) machinery in megakaryocytes (Mks) from healthy individuals and from patients with CALR-mutated myeloproliferative neoplasms (MPNs). In Mks from healthy subjects, binding of recombinant human thrombopoietin to c-Mpl induced the activation of signal transducer and activator of transcription 5, AKT, and extracellular signal-regulated kinase 1/2, determining inositol triphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER). This resulted in the dissociation of the ER protein 57 (ERp57)-mediated complex between calreticulin and stromal interaction molecule 1 (STIM1), a protein of the SOCE machinery that leads to Ca2+ mobilization. In Mks from patients with CALR-mutated MPNs, defective interactions between mutant calreticulin, ERp57, and STIM1 activated SOCE and generated spontaneous cytosolic Ca2+ flows. In turn, this resulted in abnormal Mk proliferation that was reverted using a specific SOCE inhibitor. In summary, the abnormal SOCE regulation of Ca2+ flows in Mks contributes to the pathophysiology of CALR-mutated MPNs. In perspective, SOCE may represent a new therapeutic target to counteract Mk proliferation and its clinical consequences in MPNs.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Megacariócitos/patologia , Mutação , Transtornos Mieloproliferativos/patologia , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Estudos de Casos e Controles , Humanos , Megacariócitos/metabolismo , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
5.
Blood ; 134(2): 199-210, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31064751

RESUMO

Ph-negative myeloproliferative neoplasms (MPNs) are hematological cancers that can be subdivided into entities with distinct clinical features. Somatic mutations in JAK2, CALR, and MPL have been described as drivers of the disease, together with a variable landscape of nondriver mutations. Despite detailed knowledge of disease mechanisms, targeted therapies effective enough to eliminate MPN cells are still missing. In this study of 113 MPN patients, we aimed to comprehensively characterize the mutational landscape of the granulocyte transcriptome using RNA sequencing data and subsequently examine the applicability of immunotherapeutic strategies for MPN patients. Following implementation of customized workflows and data filtering, we identified a total of 13 (12/13 novel) gene fusions, 231 nonsynonymous single nucleotide variants, and 21 insertions and deletions in 106 of 113 patients. We found a high frequency of SF3B1-mutated primary myelofibrosis patients (14%) with distinct 3' splicing patterns, many of these with a protein-altering potential. Finally, from all mutations detected, we generated a virtual peptide library and used NetMHC to predict 149 unique neoantigens in 62% of MPN patients. Peptides from CALR and MPL mutations provide a rich source of neoantigens as a result of their unique ability to bind many common MHC class I molecules. Finally, we propose that mutations derived from splicing defects present in SF3B1-mutated patients may offer an unexplored neoantigen repertoire in MPNs. We validated 35 predicted peptides to be strong MHC class I binders through direct binding of predicted peptides to MHC proteins in vitro. Our results may serve as a resource for personalized vaccine or adoptive cell-based therapy development.


Assuntos
Antígenos de Neoplasias/genética , Transtornos Mieloproliferativos/genética , Idoso , Calreticulina/genética , Feminino , Humanos , Imunoterapia/métodos , Masculino , Pessoa de Meia-Idade , Mutação , Receptores de Trombopoetina/genética , Análise de Sequência de RNA/métodos , Transcriptoma
6.
Hematol Oncol ; 38(4): 554-559, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32583904

RESUMO

Ruxolitinib is effective in myeloproliferative neoplasms (MPN) but can cause reactivation of silent infections. We aimed at evaluating viral load and T-cell responses to human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) in a cohort of 25 MPN patients treated with ruxolitinib. EBV-DNA and HCMV-DNA were quantified monthly using real-time polimerase chain reaction (PCR) on peripheral blood samples, and T-cell subsets were analyzed by flowcytometry. HCMV and EBV-directed T-cell responses were evaluated using the IFN-γ ELISPOT assay. Most patients had CD4+ and/or CD8+ T-cells below the normal range; these reductions were related to the duration of ruxolitinib treatment. In fact, reduced T-lymphocytes' subsets were found in 93% of patients treated for ≥5 years and in 45% of those treated for <5 years (P = .021). The former also had lower median numbers of CD4+ and CD8+ cells. Subclinical reactivation of EBV and HCMV occurred in 76% and 8% of patients. We observed a trend to an inverse relationship between EBV and CMV-specific CD4+ and CD8+ T-cell responses and viral load, and a trend to an inverse correlation with ruxolitinib dose. Therefore, our data suggest that the ruxolitinib treatment may interfere with immunosurveillance against EBV and HCMV.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Transtornos Mieloproliferativos/imunologia , Pirazóis/farmacologia , Ativação Viral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/virologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/imunologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/virologia , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Infecções por Vírus Epstein-Barr/virologia , Feminino , Seguimentos , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/imunologia , Humanos , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/virologia , Nitrilas , Prognóstico , Pirimidinas , Taxa de Sobrevida , Carga Viral , Ativação Viral/efeitos dos fármacos
7.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255170

RESUMO

Among classical BCR-ABL-negative myeloproliferative neoplasms (MPN), primary myelofibrosis (PMF) is the most aggressive subtype from a clinical standpoint, posing a great challenge to clinicians. Whilst the biological consequences of the three MPN driver gene mutations (JAK2, CALR, and MPL) have been well described, recent data has shed light on the complex and dynamic structure of PMF, that involves competing disease subclones, sequentially acquired genomic events, mostly in genes that are recurrently mutated in several myeloid neoplasms and in clonal hematopoiesis, and biological interactions between clonal hematopoietic stem cells and abnormal bone marrow niches. These observations may contribute to explain the wide heterogeneity in patients' clinical presentation and prognosis, and support the recent effort to include molecular information in prognostic scoring systems used for therapeutic decision-making, leading to promising clinical translation. In this review, we aim to address the topic of PMF molecular genetics, focusing on four questions: (1) what is the role of mutations on disease pathogenesis? (2) what is their impact on patients' clinical phenotype? (3) how do we integrate gene mutations in the risk stratification process? (4) how do we take advantage of molecular genetics when it comes to treatment decisions?


Assuntos
Calreticulina/genética , Janus Quinase 2/genética , Transtornos Mieloproliferativos/genética , Mielofibrose Primária/genética , Receptores de Trombopoetina/genética , Humanos , Mutação/genética , Transtornos Mieloproliferativos/patologia , Fenótipo , Mielofibrose Primária/patologia , Prognóstico
8.
Blood ; 129(24): 3227-3236, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28351937

RESUMO

The 2016 revision of the World Health Organization (WHO) classification of myeloproliferative neoplasms defines 2 stages of primary myelofibrosis (PMF): prefibrotic/early (pre-PMF) and overt fibrotic (overt PMF) phase. In this work, we studied the clinical and molecular features of patients belonging to these categories of PMF. The diagnosis of 661 PMF patients with a bone marrow biopsy at presentation was revised according to modern criteria; clinical information and annotation of somatic mutations in both driver and selected nondriver myeloid genes were available for all patients. Compared with pre-PMF, overt PMF was enriched in patients with anemia, thrombocytopenia, leukopenia, higher blast count, symptoms, large splenomegaly, and unfavorable karyotype. The different types of driver mutations were similarly distributed between the 2 categories, whereas selected mutations comprising the high mutation risk (HMR) category (any mutations in ASXL1, SRSF2, IDH1/2, EZH2) were more represented in overt PMF. More patients with overt PMF were in higher International Prognostic Scoring System risk categories at diagnosis, and the frequency increased during follow-up, suggesting greater propensity to disease progression compared with pre-PMF. Median survival was significantly shortened in overt PMF (7.2 vs 17.6 years), with triple negativity for driver mutations and presence of HMR mutations representing independent predictors of unfavorable outcome. The findings of this "real-life" study indicate that adherence to 2016 WHO criteria allows for identification of 2 distinct categories of patients with PMF where increased grades of fibrosis are associated with more pronounced disease manifestations, adverse mutation profile, and worse outcome, overall suggesting they might represent a phenotypic continuum.


Assuntos
Mutação , Mielofibrose Primária , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mielofibrose Primária/genética , Mielofibrose Primária/mortalidade , Proteínas Repressoras/genética , Fatores de Processamento de Serina-Arginina/genética , Taxa de Sobrevida , Organização Mundial da Saúde
9.
Blood ; 129(25): 3371-3378, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28424163

RESUMO

Unexplained blood cytopenias, in particular anemia, are often found in older persons. The relationship between these cytopenias and myeloid neoplasms like myelodysplastic syndromes is currently poorly defined. We studied a prospective cohort of patients with unexplained cytopenia with the aim to estimate the predictive value of somatic mutations for identifying subjects with, or at risk of, developing a myeloid neoplasm. The study included a learning cohort of 683 consecutive patients investigated for unexplained cytopenia, and a validation cohort of 190 patients referred for suspected myeloid neoplasm. Using granulocyte DNA, we looked for somatic mutations in 40 genes that are recurrently mutated in myeloid malignancies. Overall, 435/683 patients carried a somatic mutation in at least 1 of these genes. Carrying a somatic mutation with a variant allele frequency ≥0.10, or carrying 2 or more mutations, had a positive predictive value for diagnosis of myeloid neoplasm equal to 0.86 and 0.88, respectively. Spliceosome gene mutations and comutation patterns involving TET2, DNMT3A, or ASXL1 had positive predictive values for myeloid neoplasm ranging from 0.86 to 1.0. Within subjects with inconclusive diagnostic findings, carrying 1 or more somatic mutations was associated with a high probability of developing a myeloid neoplasm during follow-up (hazard ratio = 13.9, P < .001). The predictive values of mutation analysis were confirmed in the independent validation cohort. The findings of this study indicate that mutation analysis on peripheral blood granulocytes may significantly improve the current diagnostic approach to unexplained cytopenia and more generally the diagnostic accuracy of myeloid neoplasms.


Assuntos
Anemia/genética , Neoplasias Hematológicas/genética , Mutação , Pancitopenia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA , Feminino , Humanos , Leucemia Mieloide/genética , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Estudos Prospectivos , Adulto Jovem
12.
Blood ; 127(3): 325-32, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26423830

RESUMO

Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Receptores de Trombopoetina/genética , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Genômica/métodos , Humanos , Janus Quinase 2/metabolismo , Transtornos Mieloproliferativos/metabolismo , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Receptores de Trombopoetina/metabolismo , Trombocitemia Essencial/genética , Trombocitemia Essencial/metabolismo , Inativação do Cromossomo X/genética
13.
Blood ; 126(2): 233-41, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25957392

RESUMO

Refractory anemia with ring sideroblasts (RARS) is a myelodysplastic syndrome (MDS) characterized by isolated erythroid dysplasia and 15% or more bone marrow ring sideroblasts. Ring sideroblasts are found also in other MDS subtypes, such as refractory cytopenia with multilineage dysplasia and ring sideroblasts (RCMD-RS). A high prevalence of somatic mutations of SF3B1 was reported in these conditions. To identify mutation patterns that affect disease phenotype and clinical outcome, we performed a comprehensive mutation analysis in 293 patients with myeloid neoplasm and 1% or more ring sideroblasts. SF3B1 mutations were detected in 129 of 159 cases (81%) of RARS or RCMD-RS. Among other patients with ring sideroblasts, lower prevalence of SF3B1 mutations and higher prevalence of mutations in other splicing factor genes were observed (P < .001). In multivariable analyses, patients with SF3B1 mutations showed significantly better overall survival (hazard ratio [HR], .37; P = .003) and lower cumulative incidence of disease progression (HR = 0.31; P = .018) compared with SF3B1-unmutated cases. The independent prognostic value of SF3B1 mutation was retained in MDS without excess blasts, as well as in sideroblastic categories (RARS and RCMD-RS). Among SF3B1-mutated patients, coexisting mutations in DNA methylation genes were associated with multilineage dysplasia (P = .015) but had no effect on clinical outcome. TP53 mutations were frequently detected in patients without SF3B1 mutation, and were associated with poor outcome. Thus, SF3B1 mutation identifies a distinct MDS subtype that is unlikely to develop detrimental subclonal mutations and is characterized by indolent clinical course and favorable outcome.


Assuntos
Anemia Sideroblástica/genética , Mutação , Síndromes Mielodisplásicas/classificação , Síndromes Mielodisplásicas/genética , Fosfoproteínas/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anemia Sideroblástica/diagnóstico , Anemia Sideroblástica/epidemiologia , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/epidemiologia , Prognóstico , Fatores de Processamento de RNA , Adulto Jovem
16.
Int J Cancer ; 138(7): 1657-69, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26547506

RESUMO

Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients.


Assuntos
Dosagem de Genes , Proteína HMGB2/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Mielofibrose Primária/genética , Aberrações Cromossômicas , Eletroporação , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Poliamina Oxidase
17.
N Engl J Med ; 369(25): 2379-90, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24325356

RESUMO

BACKGROUND: Approximately 50 to 60% of patients with essential thrombocythemia or primary myelofibrosis carry a mutation in the Janus kinase 2 gene (JAK2), and an additional 5 to 10% have activating mutations in the thrombopoietin receptor gene (MPL). So far, no specific molecular marker has been identified in the remaining 30 to 45% of patients. METHODS: We performed whole-exome sequencing to identify somatically acquired mutations in six patients who had primary myelofibrosis without mutations in JAK2 or MPL. Resequencing of CALR, encoding calreticulin, was then performed in cohorts of patients with myeloid neoplasms. RESULTS: Somatic insertions or deletions in exon 9 of CALR were detected in all patients who underwent whole-exome sequencing. Resequencing in 1107 samples from patients with myeloproliferative neoplasms showed that CALR mutations were absent in polycythemia vera. In essential thrombocythemia and primary myelofibrosis, CALR mutations and JAK2 and MPL mutations were mutually exclusive. Among patients with essential thrombocythemia or primary myelofibrosis with nonmutated JAK2 or MPL, CALR mutations were detected in 67% of those with essential thrombocythemia and 88% of those with primary myelofibrosis. A total of 36 types of insertions or deletions were identified that all cause a frameshift to the same alternative reading frame and generate a novel C-terminal peptide in the mutant calreticulin. Overexpression of the most frequent CALR deletion caused cytokine-independent growth in vitro owing to the activation of signal transducer and activator of transcription 5 (STAT5) by means of an unknown mechanism. Patients with mutated CALR had a lower risk of thrombosis and longer overall survival than patients with mutated JAK2. CONCLUSIONS: Most patients with essential thrombocythemia or primary myelofibrosis that was not associated with a JAK2 or MPL alteration carried a somatic mutation in CALR. The clinical course in these patients was more indolent than that in patients with the JAK2 V617F mutation. (Funded by the MPN Research Foundation and Associazione Italiana per la Ricerca sul Cancro.).


Assuntos
Calreticulina/genética , Mutação , Mielofibrose Primária/genética , Trombocitemia Essencial/genética , Doenças da Medula Óssea/genética , Éxons , Humanos , Janus Quinase 2/genética , Leucemia Mieloide/genética , Reação em Cadeia da Polimerase , Mielofibrose Primária/mortalidade , Modelos de Riscos Proporcionais , Receptores de Trombopoetina/genética , Análise de Sequência de DNA , Trombocitemia Essencial/complicações , Trombocitemia Essencial/mortalidade , Trombose/etiologia
18.
Blood ; 123(15): 2416-9, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24553179

RESUMO

Somatic mutations in the calreticulin (CALR) gene were recently discovered in patients with sporadic essential thrombocythemia (ET) and primary myelofibrosis (PMF) lacking JAK2 and MPL mutations. We studied CALR mutation status in familial cases of myeloproliferative neoplasm. In a cohort of 127 patients, CALR indels were identified in 6 of 55 (11%) subjects with ET and in 6 of 20 (30%) with PMF, whereas 52 cases of polycythemia vera had nonmutated CALR. All CALR mutations were somatic, found in granulocytes but not in T lymphocytes. Patients with CALR-mutated ET showed a higher platelet count (P = .017) and a lower cumulative incidence of thrombosis (P = .036) and of disease progression (P = .047) compared with those with JAK2 (V617F). In conclusion, a significant proportion of familial ET and PMF nonmutated for JAK2 carry a somatic mutation of CALR.


Assuntos
Calreticulina/genética , Mutação , Mielofibrose Primária/genética , Trombocitemia Essencial/genética , Análise Mutacional de DNA , Éxons/genética , Predisposição Genética para Doença , Genótipo , Humanos , Janus Quinase 2/genética , Estimativa de Kaplan-Meier , Linhagem , Fenótipo , Mielofibrose Primária/mortalidade , Trombocitemia Essencial/mortalidade
19.
Blood ; 123(10): 1544-51, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24366362

RESUMO

Patients with essential thrombocythemia may carry JAK2 (V617F), an MPL substitution, or a calreticulin gene (CALR) mutation. We studied biologic and clinical features of essential thrombocythemia according to JAK2 or CALR mutation status and in relation to those of polycythemia vera. The mutant allele burden was lower in JAK2-mutated than in CALR-mutated essential thrombocythemia. Patients with JAK2 (V617F) were older, had a higher hemoglobin level and white blood cell count, and lower platelet count and serum erythropoietin than those with CALR mutation. Hematologic parameters of patients with JAK2-mutated essential thrombocythemia or polycythemia vera were related to the mutant allele burden. While no polycythemic transformation was observed in CALR-mutated patients, the cumulative risk was 29% at 15 years in those with JAK2-mutated essential thrombocythemia. There was no significant difference in myelofibrotic transformation between the 2 subtypes of essential thrombocythemia. Patients with JAK2-mutated essential thrombocythemia and those with polycythemia vera had a similar risk of thrombosis, which was twice that of patients with the CALR mutation. These observations are consistent with the notion that JAK2-mutated essential thrombocythemia and polycythemia vera represent different phenotypes of a single myeloproliferative neoplasm, whereas CALR-mutated essential thrombocythemia is a distinct disease entity.


Assuntos
Calreticulina/genética , Janus Quinase 2/genética , Mutação , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Transformação Celular Neoplásica/genética , Códon , Éxons , Feminino , Granulócitos , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/genética , Policitemia Vera/genética , Mielofibrose Primária/genética , Prognóstico , Receptores de Trombopoetina/genética , Trombocitemia Essencial/mortalidade , Trombose/genética , Adulto Jovem
20.
Blood ; 124(13): e21-32, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25097177

RESUMO

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF. In this work, we studied both gene and microRNA (miRNA) expression profiles in CD34(+) cells from PMF patients. We identified several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene expression integrative analysis, we found different regulatory networks involved in the dysregulation of transcriptional control and chromatin remodeling. In particular, we identified a network gathering several miRNAs with oncogenic potential (eg, miR-155-5p) and targeted genes whose abnormal function has been previously associated with myeloid neoplasms, including JARID2, NR4A3, CDC42, and HMGB3. Because the validation of miRNA-target interactions unveiled JARID2/miR-155-5p as the strongest relationship in the network, we studied the function of this axis in normal and PMF CD34(+) cells. We showed that JARID2 downregulation mediated by miR-155-5p overexpression leads to increased in vitro formation of CD41(+) MK precursors. These findings suggest that overexpression of miR-155-5p and the resulting downregulation of JARID2 may contribute to MK hyperplasia in PMF.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , Mielofibrose Primária/genética , RNA Mensageiro/genética , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Redes Reguladoras de Genes , Inativação Gênica , Granulócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Megacariócitos/citologia , Megacariócitos/metabolismo , Complexo Repressor Polycomb 2/genética , Interferência de RNA , Reprodutibilidade dos Testes , Trombopoese/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa