Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 43(21): e140, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26184878

RESUMO

As the use of RNA-seq has popularized, there is an increasing consciousness of the importance of experimental design, bias removal, accurate quantification and control of false positives for proper data analysis. We introduce the NOISeq R-package for quality control and analysis of count data. We show how the available diagnostic tools can be used to monitor quality issues, make pre-processing decisions and improve analysis. We demonstrate that the non-parametric NOISeqBIO efficiently controls false discoveries in experiments with biological replication and outperforms state-of-the-art methods. NOISeq is a comprehensive resource that meets current needs for robust data-aware analysis of RNA-seq differential expression.


Assuntos
Perfilação da Expressão Gênica/normas , Análise de Sequência de RNA/normas , Software , Linhagem Celular , Interpretação Estatística de Dados , Humanos , Masculino , Neoplasias da Próstata/genética , Controle de Qualidade
2.
Microbiol Res ; 271: 127361, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36921400

RESUMO

Filamentous fungi can sense useful resources and hazards in their environment and direct growth of their hyphae accordingly. Chemotropism ensures access to nutrients, contact with other individuals (e.g., for mating), and interaction with hosts in the case of pathogens. Previous studies have revealed a complex chemotropic sensing landscape during host-pathogen interactions, but the underlying molecular machinery remains poorly characterized. Here we studied mechanisms controlling directed hyphal growth of the important plant-pathogenic fungus Verticillium dahliae towards different chemoattractants. We found that the homologs of the Rag GTPase Gtr1 and the GTPase-activating protein Tsc2, an activator and a repressor of the TOR kinase respectively, play important roles in hyphal chemotropism towards nutrients, plant-derived signals, and heterologous α-pheromone of Fusarium oxysporum. Furthermore, important roles of these regulators were identified in fungal development and pathogenicity. We also found that the mitogen-activated protein kinase (MAPK) Fus3 is required for chemotropism towards nutrients, while the G protein-coupled receptor (GPCR) Ste2 and the MAPK Slt2 control chemosensing of plant-derived signals and α-pheromone. Our study establishes V. dahliae as a suitable model system for the analysis of fungal chemotropism and discovers new components of chemotropic signaling during growth and host-pathogen interactions of V. dahliae.


Assuntos
Ascomicetos , Verticillium , Humanos , Virulência , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ascomicetos/metabolismo , Feromônios/metabolismo , Proteínas Fúngicas/metabolismo , Doenças das Plantas
3.
J Fungi (Basel) ; 8(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36547575

RESUMO

Mitogen-activated protein kinase (MAPK) signaling pathways control fundamental aspects of growth and development in fungi. In the soil-inhabiting ascomycete Fusarium oxysporum, which causes vascular wilt disease in more than a hundred crops, the MAPKs Fmk1 and Mpk1 regulate an array of developmental and virulence-related processes. The downstream components mediating these disparate functions are largely unknown. Here we find that the GATA-type transcription factor Pro1 integrates signals from both MAPK pathways to control a subset of functions, including quorum sensing, hyphal fusion and chemotropism. By contrast, Pro1 is dispensable for other downstream processes such as invasive hyphal growth and virulence, or response to cell wall stress. We further show that regulation of Pro1 activity by these upstream pathways occurs at least in part at the level of transcription. Besides the MAPK pathways, upstream regulators of Pro1 transcription also include the Velvet regulatory complex, the signaling protein Soft (Fso1) and the transcription factor Ste12 which was previously shown to act downstream of Fmk1. Collectively, our results reveal a role of Pro1 in integrating the outputs from different signaling pathways of F. oxysporum thereby mediating key developmental decisions in this important fungal pathogen.

4.
Mol Plant Pathol ; 4(5): 315-25, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20569392

RESUMO

UNLABELLED: SUMMARY Taxonomy: Vascular wilt fungus; Ascomycete although sexual stage is yet to be found. The most closely related teleomorphic group, Gibberella, is classified within the Pyrenomycetes. HOST RANGE: Very broad at the species level. More than 120 different formae speciales have been identified based on specificity to host species belonging to a wide range of plant families. Disease symptoms: Initial symptoms of vascular wilt include vein clearing and leaf epinasty, followed by stunting, yellowing of the lower leafs, progressive wilting of leaves and stem, defoliation and finally death of the plant. In cross-sections of the stem, a brown ring is evident in the area of the vascular bundles. Some formae speciales are not primarily vascular pathogens but cause foot- and rootrot or bulbrot. Economic importance: Causes severe losses on most vegetables and flowers, several field crops such as cotton and tobacco, plantation crops such as banana, plantain, coffee and sugarcane, and a few shade trees. CONTROL: Use of resistant varieties is the only practical measure for controlling the disease in the field. Under greenhouse conditions, soil sterilization can be performed. Alternative control methods with potential for the future include soil solarization and biological control with antagonistic bacteria or fungi. USEFUL WEBSITES: http://www.fgsc.net/fus.htm, http://www-genome.wi.mit.edu/annotation/fungi/fusarium/, http://www.cbs.knaw.nl/fusarium/database.html.

5.
Int. microbiol ; 12(2): 115-121, jun. 2009. ilus, tab, graf
Artigo em Inglês | IBECS (Espanha) | ID: ibc-72370

RESUMO

Antifungal protein (AFP) from Aspergillus giganteus was assayed for toxicity against the Fusarium oxysporum wild-type strain and mutants in genes involved in cell signaling (DeltapacC, pacCc Deltafmk1) or cell-wall biogenesis (DeltachsV, Deltachs7, Deltagas1). The mutants were classified into two groups according to their sensitivity to AFP: DeltapacC, Deltagas1 and Deltachs7, which were significantly more resistant to AFP than the wild-type, and pacCC, Deltafmk1 and DeltachsV, which were more sensitive. Western blot analysis revealed increased binding of AFP to the three resistant mutants, DeltapacC, Deltagas1 and Deltachs7, but also to DeltachsV, indicating that differential binding may not be a key determinant for sensitivity. Addition of Ca2+ or K+ dramatically reduced antifungal activity and binding of AFP, suggesting that these cations compete for the same targets as AFP at the surface of the fungal cell (AU)


No disponible


Assuntos
Fusarium , Antifúngicos/farmacocinética , Aspergillus , Ligases/análise , Parede Celular/microbiologia , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa