RESUMO
A periodically modulated graphene (PMG) generated by nanopatterned surfaces is reported to profoundly modify the intrinsic electronic properties of graphene. The temperature dependence of the sheet resistivity and gate response measurements clearly show a semiconductor-like behavior. Raman spectroscopy reveals significant shifts of the G and the 2D modes induced by the interaction with the underlying grid-like nanostructure. The influence of the periodic, alternating contact with the substrate surface was studied in terms of strain caused by bending of graphene and doping through chemical interactions with underlying substrate atoms. Electronic structure calculations performed on a model of PMG reveals that it is possible to tune a band gap within 0.14-0.19 eV by considering both the periodic mechanical bending and the surface coordination chemistry. Therefore, the PMG can be regarded as a further step toward band gap engineering of graphene devices.
RESUMO
The spin textures of ultra-thin magnetic layers exhibit surprising variety. The loss of inversion symmetry at the interface of the magnetic layer and substrate gives rise to the so-called Dzyaloshinskii-Moriya interaction which favors non-collinear spin arrangements with unique rotational sense. Here we review the application of spin-polarized scanning tunneling microscopy to such systems, which has led to the discovery of interface-induced chiral domain walls and spin spirals. Recently, different interface-driven skyrmion lattices have been found, and the writing as well as the deleting of individual skyrmions based on local spin-polarized current injection has been demonstrated. These interface-induced non-collinear magnetic states offer new exciting possibilities to study fundamental magnetic interactions and to tailor material properties for spintronic applications.
RESUMO
A topological insulator is a state of quantum matter that, while being an insulator in the bulk, hosts topologically protected electronic states at the surface. These states open the opportunity to realize a number of new applications in spintronics and quantum computing. To take advantage of their peculiar properties, topological insulators should be tuned in such a way that ideal and isolated Dirac cones are located within the topological transport regime without any scattering channels. Here we report ab-initio calculations, spin-resolved photoemission and scanning tunnelling microscopy experiments that demonstrate that the conducting states can effectively tuned within the concept of a homologous series that is formed by the binary chalcogenides (Bi(2)Te(3), Bi(2)Se(3) and Sb(2)Te(3)), with the addition of a third element of the group IV.