Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
PLoS Comput Biol ; 20(1): e1011753, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38181054

RESUMO

Biological cells replicate their genomes in a well-planned manner. The DNA replication program of an organism determines the timing at which different genomic regions are replicated, with fundamental consequences for cell homeostasis and genome stability. In a growing cell culture, genomic regions that are replicated early should be more abundant than regions that are replicated late. This abundance pattern can be experimentally measured using deep sequencing. However, a general quantitative theory linking this pattern to the replication program is still lacking. In this paper, we predict the abundance of DNA fragments in asynchronously growing cultures from any given stochastic model of the DNA replication program. As key examples, we present stochastic models of the DNA replication programs in budding yeast and Escherichia coli. In both cases, our model results are in excellent agreement with experimental data and permit to infer key information about the replication program. In particular, our method is able to infer the locations of known replication origins in budding yeast with high accuracy. These examples demonstrate that our method can provide insight into a broad range of organisms, from bacteria to eukaryotes.


Assuntos
Replicação do DNA , Genoma , Replicação do DNA/genética , DNA , Genômica , Replicação Viral , Origem de Replicação/genética , Período de Replicação do DNA
2.
Proc Natl Acad Sci U S A ; 119(12): e2120821119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35302890

RESUMO

SignificanceMany microbial populations proliferate in small channels. In such environments, reproducing cells organize in parallel lanes. Reproducing cells shift these lanes, potentially expelling other cells from the channel. In this paper, we combine theory and experiments to understand how these dynamics affects the diversity of a microbial population. We theoretically predict that genetic diversity is quickly lost along lanes of cells. Our experiments confirm that a population of proliferating Escherichia coli in a microchannel organizes into lanes of genetically identical cells within a few generations. Our findings elucidate the effect of lane formation on populations evolution, with potential applications ranging from microbial ecology in soil to dynamics of epithelial tissues in higher organisms.


Assuntos
Escherichia coli , Genética Populacional , Escherichia coli/genética , Solo
3.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34140336

RESUMO

Cells are the basic units of all living matter which harness the flow of energy to drive the processes of life. While the biochemical networks involved in energy transduction are well-characterized, the energetic costs and constraints for specific cellular processes remain largely unknown. In particular, what are the energy budgets of cells? What are the constraints and limits energy flows impose on cellular processes? Do cells operate near these limits, and if so how do energetic constraints impact cellular functions? Physics has provided many tools to study nonequilibrium systems and to define physical limits, but applying these tools to cell biology remains a challenge. Physical bioenergetics, which resides at the interface of nonequilibrium physics, energy metabolism, and cell biology, seeks to understand how much energy cells are using, how they partition this energy between different cellular processes, and the associated energetic constraints. Here we review recent advances and discuss open questions and challenges in physical bioenergetics.


Assuntos
Células/metabolismo , Metabolismo Energético , Fenômenos Físicos
4.
Biophys J ; 122(7): 1334-1341, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823986

RESUMO

The polymerase chain reaction (PCR) is a central technique in biotechnology. Its ability to amplify a specific target region of a DNA sequence has led to prominent applications, including virus tests, DNA sequencing, genotyping, and genome cloning. These applications rely on the specificity of the primer hybridization and therefore require effective suppression of hybridization errors. A simple and effective method to achieve that is to add blocker strands, also called clamps, to the PCR mixture. These strands bind to the unwanted target sequence, thereby blocking the primer mishybridization. Because of its simplicity, this method is applicable to a broad nucleic-acid-based biotechnology. However, the precise mechanism by which blocker strands suppress PCR errors remains to be understood, limiting the applicability of this technique. Here, we combine experiments and theoretical modeling to reveal this mechanism. We find that the blocker strands both energetically destabilize the mishybridized complex and sculpt a kinetic barrier to suppress mishybridization. This combination of energetic and kinetic biasing extends the viable range of annealing temperatures, which reduces design constraint of the primer sequence and extends the applicability of PCR.


Assuntos
Ácidos Nucleicos , Primers do DNA/genética , Reação em Cadeia da Polimerase/métodos , Hibridização de Ácido Nucleico , Temperatura
5.
Mol Biol Evol ; 38(9): 3820-3831, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426845

RESUMO

Intracellular endosymbionts have reduced genomes that progressively lose genes at a timescale of tens of million years. We previously reported that gene loss rate is linked to mutation rate in Blattabacterium, however, the mechanisms causing gene loss are not yet fully understood. Here, we carried out comparative genomic analyses on the complete genome sequences of a representative set of 67 Blattabacterium strains, with sizes ranging between 511 and 645 kb. We found that 200 of the 566 analyzed protein-coding genes were lost in at least one lineage of Blattabacterium, with the most extreme case being one gene that was lost independently in 24 lineages. We found evidence for three mechanisms influencing gene loss in Blattabacterium. First, gene loss rates were found to increase exponentially with the accumulation of substitutions. Second, genes involved in vitamin and amino acid metabolism experienced relaxed selection in Cryptocercus and Mastotermes, possibly triggered by their vertically inherited gut symbionts. Third, we found evidence of epistatic interactions among genes leading to a "domino effect" of gene loss within pathways. Our results highlight the complexity of the process of genome erosion in an endosymbiont.


Assuntos
Bacteroidetes/genética , Baratas/microbiologia , Genoma Bacteriano , Taxa de Mutação , Simbiose/genética , Animais , Seleção Genética
6.
Phys Rev Lett ; 127(20): 208102, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860046

RESUMO

The CRISPR-Cas9 system acts as the prokaryotic immune system and has important applications in gene editing. The protein Cas9 is one of its crucial components. The role of Cas9 is to search for specific target sequences on the DNA and cleave them. In this Letter, we introduce a model of facilitated diffusion for Cas9 and fit its parameters to single-molecule experiments. Our model confirms that Cas9 search for targets by sliding, but shows that its sliding length is rather short. We then investigate how Cas9 explores a long stretch of DNA containing randomly placed targets. We solve this problem by mapping it into the theory of Anderson localization in condensed matter physics. Our theoretical approach rationalizes experimental evidence on the distribution of Cas9 molecules along the DNA.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/metabolismo
7.
PLoS Comput Biol ; 15(4): e1006529, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30998676

RESUMO

In ecology, species can mitigate their extinction risks in uncertain environments by diversifying individual phenotypes. This observation is quantified by the theory of bet-hedging, which provides a reason for the degree of phenotypic diversity observed even in clonal populations. Bet-hedging in well-mixed populations is rather well understood. However, many species underwent range expansions during their evolutionary history, and the importance of phenotypic diversity in such scenarios still needs to be understood. In this paper, we develop a theory of bet-hedging for populations colonizing new, unknown environments that fluctuate either in space or time. In this case, we find that bet-hedging is a more favorable strategy than in well-mixed populations. For slow rates of variation, temporal and spatial fluctuations lead to different outcomes. In spatially fluctuating environments, bet-hedging is favored compared to temporally fluctuating environments. In the limit of frequent environmental variation, no opportunity for bet-hedging exists, regardless of the nature of the environmental fluctuations. For the same model, bet-hedging is never an advantageous strategy in the well-mixed case, supporting the view that range expansions strongly promote diversification. These conclusions are robust against stochasticity induced by finite population sizes. Our findings shed light on the importance of phenotypic heterogeneity in range expansions, paving the way to novel approaches to understand how biodiversity emerges and is maintained.


Assuntos
Evolução Biológica , Biologia Computacional/métodos , Aptidão Genética , Modelos Biológicos , Ecologia , Modelos Estatísticos , Dinâmica Populacional
8.
Nucleic Acids Res ; 46(2): 558-567, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29216364

RESUMO

Transcription factors (TFs) are able to associate to their binding sites on DNA faster than the physical limit posed by diffusion. Such high association rates can be achieved by alternating between three-dimensional diffusion and one-dimensional sliding along the DNA chain, a mechanism-dubbed facilitated diffusion. By studying a collection of TF binding sites of Escherichia coli from the RegulonDB database and of Bacillus subtilis from DBTBS, we reveal a funnel in the binding energy landscape around the target sequences. We show that such a funnel is linked to the presence of gradients of AT in the base composition of the DNA region around the binding sites. An extensive computational study of the stochastic sliding process along the energetic landscapes obtained from the database shows that the funnel can significantly enhance the probability of TFs to find their target sequences when sliding in their proximity. We demonstrate that this enhancement leads to a speed-up of the association process.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Difusão Facilitada , Fatores de Transcrição/metabolismo , Algoritmos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Composição de Bases , Sítios de Ligação/genética , DNA/química , DNA/genética , Bases de Dados Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Modelos Teóricos , Ligação Proteica , Regulon/genética
9.
Phys Rev Lett ; 123(3): 038101, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386470

RESUMO

Synthesis of biopolymers such as DNA, RNA, and proteins are biophysical processes aided by enzymes. The performance of these enzymes is usually characterized in terms of their average error rate and speed. However, because of thermal fluctuations in these single-molecule processes, both error and speed are inherently stochastic quantities. In this Letter, we study fluctuations of error and speed in biopolymer synthesis and show that they are in general correlated. This means that, under equal conditions, polymers that are synthesized faster due to a fluctuation tend to have either better or worse errors than the average. The error-correction mechanism implemented by the enzyme determines which of the two cases holds. For example, discrimination in the forward reaction rates tends to grant smaller errors to polymers with faster synthesis. The opposite occurs for discrimination in monomer rejection rates. Our results provide an experimentally feasible way to identify error-correction mechanisms by measuring the error-speed correlations.


Assuntos
Biopolímeros/biossíntese , Enzimas/química , Enzimas/metabolismo , Biopolímeros/química , DNA/biossíntese , DNA/química , Humanos , Modelos Biológicos , Modelos Químicos , RNA/biossíntese , RNA/química
10.
Am Nat ; 192(1): 72-80, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29897801

RESUMO

Many living organisms in terrestrial and aquatic ecosystems rely on multiple reproductive strategies to reduce the risk of extinction in variable environments. Examples are provided by the polyp stage of several bloom-forming jellyfish species, which can reproduce asexually using different budding strategies. These strategies broadly fall into three categories: (1) fast localized reproduction, (2) dormant cysts, or (3) motile and dispersing buds. Similar functional strategies are also present in other groups of species. However, mechanisms leading to the evolution of this rich reproductive diversity are yet to be clarified. Here we model how risk of local population extinction and differential fitness of alternative modes of asexual reproduction could drive the evolution of multiple reproductive modes as seen in jellyfish polyps. Depending on environmental parameters, we find that evolution leads to a unique evolutionarily stable strategy, wherein multiple reproductive strategies generally coexist. As the extinction risk increases, this strategy shifts from a pure budding mode to a dual strategy and finally to one characterized by allocation into all three modes. We identify relative fitness-dependent thresholds in extinction risk where these transitions can occur and discuss our predictions in light of observations on polyp reproduction in laboratory and natural systems.


Assuntos
Evolução Biológica , Modelos Biológicos , Reprodução Assexuada , Cifozoários/fisiologia , Animais
11.
Phys Rev Lett ; 121(9): 090601, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230899

RESUMO

We show that the fraction of time that a thermodynamic current spends above its average value follows the arcsine law, a prominent result obtained by Lévy for Brownian motion. Stochastic currents with long streaks above or below their average are much more likely than those that spend similar fractions of time above and below their average. Our result is confirmed with experimental data from a Brownian Carnot engine. We also conjecture that two other random times associated with currents obey the arcsine law: the time a current reaches its maximum value and the last time a current crosses its average value. These results apply to, inter alia, molecular motors, quantum dots, and colloidal systems.

12.
Phys Rev Lett ; 119(14): 140604, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053318

RESUMO

We derive an Itô stochastic differential equation for entropy production in nonequilibrium Langevin processes. Introducing a random-time transformation, entropy production obeys a one-dimensional drift-diffusion equation, independent of the underlying physical model. This transformation allows us to identify generic properties of entropy production. It also leads to an exact uncertainty equality relating the Fano factor of entropy production and the Fano factor of the random time, which we also generalize to non-steady-state conditions.

13.
J Theor Biol ; 395: 204-210, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26872715

RESUMO

We study an individual-based model in which two spatially distributed species, characterized by different diffusivities, compete for resources. We consider three different ecological settings. In the first, diffusing faster has a cost in terms of reproduction rate. In the second case, resources are not uniformly distributed in space. In the third case, the two species are transported by a fluid flow. In all these cases, at varying the parameters, we observe a transition from a regime in which diffusing faster confers an effective selective advantage to one in which it constitutes a disadvantage. We analytically estimate the magnitude of this advantage (or disadvantage) and test it by measuring fixation probabilities in simulations of the individual-based model. Our results provide a framework to quantify evolutionary pressure for increased or decreased dispersal in a given environment.


Assuntos
Evolução Biológica , Ecossistema , Modelos Biológicos
14.
Phys Rev Lett ; 112(18): 188102, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856726

RESUMO

We study a stochastic spatial model of biological competition in which two species have the same birth and death rates, but different diffusion constants. In the absence of this difference, the model can be considered as an off-lattice version of the voter model and presents similar coarsening properties. We show that even a relative difference in diffusivity on the order of a few percent may lead to a strong bias in the coarsening process favoring the more agile species. We theoretically quantify this selective advantage and present analytical formulas for the average growth of the fastest species and its fixation probability.


Assuntos
Comportamento Competitivo , Ecossistema , Modelos Biológicos , Dinâmica Populacional , Difusão , Processos Estocásticos
15.
Phys Rev Lett ; 110(18): 188101, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683246

RESUMO

We study stochastic copying schemes in which discrimination between a right and a wrong match is achieved via different kinetic barriers or different binding energies of the two matches. We demonstrate that, in single-step reactions, the two discrimination mechanisms are strictly alternative and cannot be mixed to further reduce the error fraction. Close to the lowest error limit, kinetic discrimination results in a diverging copying velocity and dissipation per copied bit. On the other hand, energetic discrimination reaches its lowest error limit in an adiabatic regime where dissipation and velocity vanish. By analyzing experimentally measured kinetic rates of two DNA polymerases, T7 and Polγ, we argue that one of them operates in the kinetic and the other in the energetic regime. Finally, we show how the two mechanisms can be combined in copying schemes implementing error correction through a proofreading pathway.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Biológicos , Cinética , Processos Estocásticos , Termodinâmica
16.
J Theor Biol ; 338: 1-8, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23999281

RESUMO

We study a stochastic community model able to interpolate from a neutral regime to a niche partitioned regime upon varying a single parameter tuning the intensity of niche stabilization, namely the difference between intraspecific and interspecific competition. By means of a self-consistent approach, we obtain an analytical expression for the species abundance distribution, in excellent agreement with stochastic simulations of the model. In the neutral limit, the Fisher log-series is recovered, while upon increasing the stabilization strength the species abundance distribution develops a maximum for species at intermediate abundances, corresponding to the emergence of a carrying capacity. Numerical studies of species extinction-time distribution show that niche-stabilization strongly affects also the dynamical properties of the system by increasing the average species lifetimes, while suppressing their fluctuations. The results are discussed in view of the niche-neutral debate and of their potential relevance to field data.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Biodiversidade , Comportamento Competitivo/fisiologia , Extinção Biológica , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie , Processos Estocásticos
17.
Phys Rev E ; 108(6): L062101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243435

RESUMO

Quantifying irreversibility of a system using finite information constitutes a major challenge in stochastic thermodynamics. We introduce an observable that measures the time-reversal asymmetry between two states after a given time lag. Our central result is a bound on the time-reversal asymmetry in terms of the total cycle affinity driving the system out of equilibrium. This result leads to further thermodynamic bounds on the asymmetry of directed fluxes, on the asymmetry of finite-time cross-correlations, and on the cycle affinity of coarse-grained dynamics.

18.
Phys Rev Lett ; 108(12): 128102, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540626

RESUMO

We study competition between two biological species advected by a compressible velocity field. Individuals are treated as discrete Lagrangian particles that reproduce or die in a density-dependent fashion. In the absence of a velocity field and fitness advantage, number fluctuations lead to a coarsening dynamics typical of the stochastic Fisher equation. We investigate three examples of compressible advecting fields: a shell model of turbulence, a sinusoidal velocity field and a linear velocity sink. In all cases, advection leads to a striking drop in the fixation time, as well as a large reduction in the global carrying capacity. We find localization on convergence zones, and very rapid extinction compared to well-mixed populations. For a linear velocity sink, one finds a bimodal distribution of fixation times. The long-lived states in this case are demixed configurations with a single interface, whose location depends on the fitness advantage.


Assuntos
Genética Populacional/métodos , Modelos Genéticos , Animais , Comportamento Competitivo , Simulação por Computador , Emigração e Imigração , Processos Estocásticos
19.
Phys Rev Lett ; 108(8): 088701, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463583

RESUMO

In lowest unique bid auctions, N players bid for an item. The winner is whoever places the lowest bid, provided that it is also unique. We use a grand canonical approach to derive an analytical expression for the equilibrium distribution of strategies. We then study the properties of the solution as a function of the mean number of players, and compare them with a large data set of internet auctions. The theory agrees with the data with striking accuracy for small population-size N, while for larger N a qualitatively different distribution is observed. We interpret this result as the emergence of two different regimes, one in which adaptation is feasible and one in which it is not. Our results question the actual possibility of a large population to adapt and find the optimal strategy when participating in a collective game.

20.
J Theor Biol ; 307: 205-10, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22762992

RESUMO

We analyze a class of network motifs in which a short, two-node positive feedback motif is inserted in a three-node negative feedback loop. We demonstrate that such networks can undergo a bifurcation to a state where a stable fixed point and a stable limit cycle coexist. At the bifurcation point the period of the oscillations diverges. Further, intrinsic noise can make the system switch between oscillatory state and the stationary state spontaneously. We find that this switching also occurs in previous models of circadian clocks that use this combination of positive and negative feedbacks. Our results suggest that real-life circadian systems may need specific regulation to prevent or minimize such switching events.


Assuntos
Retroalimentação Fisiológica , Homeostase/fisiologia , Transdução de Sinais/fisiologia , Animais , Simulação por Computador , Drosophila melanogaster/fisiologia , Modelos Biológicos , Processos Estocásticos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa