Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Anal Chem ; 96(4): 1565-1575, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38226978

RESUMO

Luminescence lifetimes are an attractive analytical method for detection due to its high sensitivity and stability. Iridium probes exhibit luminescence with long excited-state lifetimes, which are sensitive to the local environment. Perfluorooctanoic acid (PFOA) is listed as a chemical of high concern regarding its toxicity and is classified as a "forever chemical". In addition to strict limits on the presence of PFOA in drinking water, environmental contamination from industrial effluent or chemical spills requires rapid, simple, accurate, and cost-effective analysis in order to aid containment. Herein, we report the fabrication and function of a novel and facile luminescence sensor for PFOA based on iridium modified on gold surfaces. These surfaces were modified with lipophilic iridium complexes bearing alkyl chains, namely, IrC6 and IrC12, and Zonyl-FSA surfactant. Upon addition of PFOA, the modified surfaces IrC6-FSA@Au and IrC12-FSA @Au show the largest change in the red luminescence signal with changes in the luminescence lifetime that allow monitoring of PFOA concentrations in aqueous solutions. The platform was tested for the measurement of PFOA in aqueous samples spiked with known concentrations of PFOA and demonstrated the capacity to determine PFOA at concentrations >100 µg/L (240 nM).

2.
Small ; 20(3): e2304237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37679096

RESUMO

Recent chronological breakthroughs in materials innovation, their fabrication, and structural designs for disparate applications have paved transformational ways to subversively digitalize infrared (IR) thermal imaging sensors from traditional to smart. The noninvasive IR thermal imaging sensors are at the cutting edge of developments, exploiting the abilities of nanomaterials to acquire arbitrary, targeted, and tunable responses suitable for integration with host materials and devices, intimately disintegrate variegated signals from the target onto depiction without any discomfort, eliminating motional artifacts and collects precise physiological and physiochemical information in natural contexts. Highlighting several typical examples from recent literature, this review article summarizes an accessible, critical, and authoritative summary of an emerging class of advancement in the modalities of nano and micro-scale materials and devices, their fabrication designs and applications in infrared thermal sensors. Introduction is begun covering the importance of IR sensors, followed by a survey on sensing capabilities of various nano and micro structural materials, their design architects, and then culminating an overview of their diverse application swaths. The review concludes with a stimulating frontier debate on the opportunities, difficulties, and future approaches in the vibrant sector of infrared thermal imaging sensors.

3.
Chemistry ; 28(4): e202103541, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34811834

RESUMO

Dual detection systems are of interest for rapid, accurate data collection in sensing systems and in vitro testing. We introduce an IrIII complex with a boronic acid receptor site attached to the 2-phenylpyridine ligand as an ideal probe with photo- and electrochemical signals that is sensitive to monosaccharide binding in aqueous solution. The complex displays orange luminescence at 618 nm, which is reduced by 70 and 40 % upon binding of fructose and glucose, respectively. The electro-chemiluminescent signal of the complex also shows a direct response to monosaccharide binding. The IrIII complex shows the same response upon incorporation into hydrogel matrices as in solution, thus demonstrating the potential of its integration into a device, as a nontoxic, simple-to-use tool to observe sugar binding over physiologically relevant pH ranges and saccharide concentrations. Moreover, the complex's luminescence is responsive to monosaccharide presence in cancer cells.


Assuntos
Irídio , Luminescência , Ácidos Borônicos , Carboidratos , Água
4.
Inorg Chem ; 60(6): 3651-3656, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33656338

RESUMO

Introducing both tetrazine radical and azido bridges afforded two air-stable square complexes [MII4(bpztz•-)4(N3)4] (MII = Zn2+, 1; Co2+, 2; bpztz = 3,6-bis(3,5-dimethylpyrazolyl)-1,2,4,5-tetrazine), where the metal ions are cobridged by µ1,1-azido bridges and tetrazine radicals. Magnetic studies revealed strong antiferromagnetic metal-radical interaction with a coupling constant of -64.7 cm-1 in the 2J formalism in 2. Remarkably, 2 exhibits slow relaxation of magnetization with an effective barrier for spin reverse of 96 K at zero applied field.

5.
Inorg Chem ; 58(19): 13268-13275, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31553597

RESUMO

The design of coordination sites around lanthanide ions has a strong impact on the sensitization of their luminescent signal. An imidodiphosphonate anionic binding site is attractive as it can be functionalized with "remote" sensitizer units, such as phenoxy moieties, namely, HtpOp, accompanied by an increased distance of the lanthanide from the ligand high-energy stretching vibrations which quench the luminescence signal, hence providing flexible shielding of the lanthanide. We report the formation and isolation of Ln(tpOp)3 complexes where Ln = Er, Gd, Tb, Dy, Eu, and Yb and the Y(tpOp)3 diamagnetic analogue. The complexes are formed from reaction of KtpOp and the corresponding LnCl3·6H2O salt either by titration and in situ formation or by mixing and isolation. All complexes are seven-coordinated by three tpOp ligand plus one ethanol molecule, except for Yb(tpOp)3 which has no solvent coordinated. Phosphorus NMR shows characteristic shifts to support the coordination of the lanthanide complexes. The complexes display visible and near-infrared luminescence with long lifetimes even for the near-infrared complexes which range from 3.3 µs for Nd(tpOp)3 to 20 µs for Yb(tpOp)3. The ligand shows more efficient sensitization than the imidodiphosphinate analogues for all lanthanide complexes with a notable quantum yield of the Tb(tpOp)3 complex at 45%. We attribute this to the properties of the remote sensitizer unit and its positioning further away from the lanthanide, eliminating quenching of high energy C-H vibrations from the ligand shell. Calculations of the ligand shielding support the photophysical properties of the complexes. These results suggest that these binding sites are promising in the further development of the lanthanide complexes in optoelectronic devices for telecommunications and new light emitting materials.

6.
J Am Chem Soc ; 140(32): 10242-10249, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30032598

RESUMO

The development of long-lived luminescent nanoparticles for lifetime imaging is of wide interest as luminescence lifetime is environmentally sensitive detection independent of probe concentration. We report novel iridium-coated gold nanoparticles as probes for multiphoton lifetime imaging with characteristic long luminescent lifetimes based on iridium luminescence in the range of hundreds of nanoseconds and a short signal on the scale of picoseconds based on gold allowing multichannel detection. The tailor-made IrC6 complex forms stable, water-soluble gold nanoparticles (AuNPs) of 13, 25, and 100 nm, bearing 1400, 3200, and 22 000 IrC6 complexes per AuNP, respectively. The sensitivity of the iridium signal on the environment of the cell is evidenced with an observed variation of lifetimes. Clusters of iridium nanoparticles show lifetimes from 450 to 590 ns while lifetimes of 660 and 740 ns are an average of different points in the cytoplasm and nucleus. Independent luminescence lifetime studies of the nanoparticles in different media and under aggregation conditions postulate that the unusual long lifetimes observed can be attributed to interaction with proteins rather than nanoparticle aggregation. Total internal reflection fluorescence microscopy (TIRF), confocal microscopy studies and 3D luminescence lifetime stacks confirm the presence of bright, nonaggregated nanoparticles inside the cell. Inductively coupled plasma mass spectrometry (ICPMS) analysis further supports the presence of the nanoparticles in cells. The iridium-coated nanoparticles provide new nanoprobes for lifetime detection with dual channel monitoring. The combination of the sensitivity of the iridium signal to the cell environment together with the nanoscaffold to guide delivery offer opportunities for iridium nanoparticles for targeting and tracking in in vivo models.


Assuntos
Irídio/química , Nanopartículas Metálicas/química , Complexos de Coordenação , Ouro/química , Células HeLa , Humanos , Luminescência , Imagem Óptica , Tensoativos
7.
Chembiochem ; 16(11): 1680-8, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26062886

RESUMO

Lifeact is a 17-residue peptide that can be employed in cell microscopy as a probe for F-actin when fused to fluorescent proteins, but therefore is not suitable for all cell types. We have conjugated fluorescently labelled Lifeact to three different cell-penetrating systems (a myristoylated carrier (myr), the pH low insertion peptide (pHLIP) and the cationic peptide TAT) as a strategy to deliver Lifeact into cells and developed new tools for actin staining with improved synthetic accessibility and low toxicity, focusing on their suitability in platelets and megakaryocytes. Using confocal microscopy, we characterised the cell distribution of the new hybrids in fixed cells, and found that both myr- and pHLIP-Lifeact conjugates provide efficient actin staining upon cleavage of Lifeact from the carriers, without affecting cell spreading. This new approach could facilitate the design of new tools for actin visualisation.


Assuntos
Actinas/metabolismo , Plaquetas/metabolismo , Peptídeos Penetradores de Células/metabolismo , Corantes Fluorescentes/metabolismo , Megacariócitos/metabolismo , Sequência de Aminoácidos , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Coloração e Rotulagem
8.
Faraday Discuss ; 185: 219-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26419274

RESUMO

The photophysical properties of gold nanoparticles, AuNPs, with sizes of 13, 50 and 100 nm in diameter, coated with surface-active ruthenium complexes have been studied to investigate the effect of the distance of the ruthenium luminescent centre from the gold surface. Luminescence lifetimes of the three ruthenium probes, RuS1, RuS6 and RuS12, with different length spacer units between the surface active groups and the ruthenium centre were taken. The metal complexes were attached to AuNP13, AuNP50 and AuNP100 via thiol groups using a method of precoating the nanoparticles with a fluorinated surfactant. The luminescence lifetime of the longer spacer unit complex, RuS12, was enhanced by 70% upon attachment to the AuNP when compared to the increase of the short and medium linker unit complexes, RuS1 (20%) and (RuS6 40%) respectively. The effect of the surfactant in the lifetime increase of the ruthenium coated AuNPs was shown to be larger for the medium spacer probe, RuS6. There was no effect of the change of the size of the AuNPs from 13 to 50 or 100 nm.

9.
Proc Natl Acad Sci U S A ; 109(6): 1862-7, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308346

RESUMO

Water soluble, luminescent gold nanoparticles are delivered into human platelets via a rapid, pH-controlled mechanism using a pH low insertion peptide, pHLIP. The approach introduces cocoating of gold nanoparticles with a europium luminescent complex, EuL and the pHLIP peptide to give pHLIP•EuL•Au. The 13-nm diameter gold nanoparticles act as a scaffold for the attachment of both the luminescent probe and the peptide to target delivery. Their size allows delivery of approximately 640 lanthanide probes per nanoparticle to be internalized in human platelets, which are not susceptible to transfection or microinjection. The internalization of pHLIP•EuL•Au in platelets, which takes just minutes, was studied with a variety of imaging modalities including luminescence, confocal reflection, and transmission electron microscopy. The results show that pHLIP•EuL•Au only enters the platelets in low pH conditions, pH 6.5, mediated by the pHLIP translocation across the membrane, and not at pH 7.4. Luminescence microscopy images of the treated platelets show clearly the red luminescence signal from the europium probe and confocal reflection microscopy confirms the presence of the gold particles. Furthermore, transmission electron microscopy gives a detailed insight of the internalization and spatial localization of the gold nanoparticles in the platelets. Thus, we demonstrate the potential of the design to translocate multimodal nanoparticle probes into cells in a pH dependent manner.


Assuntos
Plaquetas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Európio/metabolismo , Luminescência , Nanopartículas/química , Humanos , Concentração de Íons de Hidrogênio , Imageamento Tridimensional , Proteínas de Membrana/metabolismo , Microscopia Confocal , Nanopartículas/ultraestrutura , Espectrofotometria Ultravioleta
10.
J Am Chem Soc ; 136(4): 1166-9, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24405157

RESUMO

A new peptide sequence (MB1) has been designed which, in the presence of a trivalent lanthanide ion, has been programmed to self-assemble to form a three stranded metallo-coiled coil, Ln(III)(MB1)3. The binding site has been incorporated into the hydrophobic core using natural amino acids, restricting water access to the lanthanide. The resulting terbium coiled coil displays luminescent properties consistent with a lack of first coordination sphere water molecules. Despite this the gadolinium coiled coil, the first to be reported, displays promising magnetic resonance contrast capabilities.


Assuntos
Meios de Contraste/química , Elementos da Série dos Lantanídeos/química , Imageamento por Ressonância Magnética , Compostos Organometálicos/química , Peptídeos/química , Meios de Contraste/síntese química , Luminescência , Modelos Moleculares , Compostos Organometálicos/síntese química
11.
Langmuir ; 29(47): 14701-8, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24164285

RESUMO

To establish highly luminescent nanoparticles for monitoring fluid flows, we examined the preparation of silica nanoparticles based on immobilization of a cyclometalated iridium(III) complex and an examination of the photophysical studies provided a good insight into the Ir(III) microenvironment in order to reveal the most suitable silica nanoparticles for micro particle imaging velocimetry (µ-PIV) studies. Iridium complexes covalently incorporated at the surface of preformed silica nanoparticles, [Ir-4]@Si500-Z, using a fluorinated polymer during their preparation, demonstrated better stability than those without the polymer, [Ir-4]@Si500, as well as an increase in steady state photoluminescence intensity (and therefore particle brightness) and lifetimes which are increased by 7-fold compared with nanoparticles with the same metal complex attached covalently throughout their core, [Ir-4]⊂Si500. Screening of the nanoparticles in fluid flows using epi-luminescence microscopy also confirm that the brightest, and therefore most suitable particles for microparticle imaging velocimetry (µ-PIV) measurements are those with the Ir(III) complex immobilized at the surface with fluorosurfactant, that is [Ir-4]@Si500-Z. µ-PIV studies demonstrate the suitability of these nanoparticles as nanotracers in microchannels.


Assuntos
Irídio/química , Nanopartículas/química , Compostos Organometálicos/química , Dióxido de Silício/química , Tensoativos/química , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
12.
Nanoscale Adv ; 5(9): 2453-2461, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143796

RESUMO

The inefficacy of antibiotics against Gram-negative bacteria is a major challenge for treatment of many clinically important bacterial infections. The complex structure of the double cell membrane of Gram-negative bacteria makes it inaccessible to many key antibiotics such as vancomycin and also presents a major challenge for drug development. In this study we design of a novel hybrid silica nanoparticle system bearing membrane targeting groups with the antibiotic encapsulated together with a ruthenium luminescent tracking agent, for optical detection of the nanoparticle delivery in the bacterial cell. The hybrid system shows delivery of vancomycin and efficacy against a library of Gram negative bacterial species. Evidence of penetration of nanoparticles in bacteria cells is achieved via luminescence of the ruthenium signal. Our studies show that nanoparticles modified with aminopolycarboxylate chelating groups are an effective delivery system in bacterial growth inhibition in species whereas the molecular antibiotic is ineffective. This design provides a new platform for delivery of antibiotics that cannot alone penetrate the bacterial membrane.

13.
J Am Chem Soc ; 133(4): 1033-43, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21182290

RESUMO

Lanthanide complexes based on bis(amides) of diethylenetriaminepentaacetic acid with thiol functionalities are modified with 2,2'-dipyridyl disulfide to give activated complexes that can selectively react with thiol-functionalized complexes to form heterometallic lanthanide macrocycles. The preparation and full characterization of the polyaminocarboxylate ligands N,N''-bis[p-thiophenyl(aminocarbonyl)]diethylenetriamine-N,N',N''-triacetic acid (H(3)L(x)) and the activated N,N''-bis[p-(pyridyldithio)[phenyl(aminocarbonyl)]]diethylenetriamine-N,N',N''-triacetic acid (H(3)L(y)) and the complexes LaL(x), NdL(x), SmL(x), EuL(x), GdL(x), DyL(x), TbL(x), ErL(x), and YbL(x) are reported. The luminescence properties of the LnL(x) complexes emitting in the visible (where Ln = Dy(3+), Tb(3+), Eu(3+), and Sm(3+)) are examined by steady-state and time-resolved photoluminescence, and the triplet state energy level of GdL(x) was estimated to be 24 100 cm(-1) from the 0-0 band of the 77 K phosphorescence spectrum. Near-infrared emission was detected for the NdL(x), YbL(x), and ErL(x) complexes, demonstrating the versatility of the thiophenol chromophore. The assembly of purely heterometallic EuTbL(x)(2) macrocycles by reaction of EuL(x) with TbL(y) was followed by UV-vis absorption spectroscopy, monitoring the characteristic absorption peak of pyridyl-2-thione at 353 nm. Analysis of the solution by mass spectrometry reveals the formation of purely heterometallic macrocycle EuTbL(x)(2). This is in contrast with the results obtained by dynamic self-assembly under oxidative conditions, where we observe a statistical mixture of macrocyclic complexes of Eu(2)L(x)(2), Tb(2)L(x)(2), and EuTbL(x)(2). The EuTbL(x)(2) macrocycle displays dual color emission, incorporating the characteristic f-f transitions of Eu(3+) and Tb(3+). Investigation into the time-resolved photophysical properties of EuTbL(x)(2) reveals energy transfer from Tb(3+) to Eu(3+), facilitated by the different conformations of the macrocycle in solution.


Assuntos
Dissulfetos/química , Elementos da Série dos Lantanídeos/química , Compostos Macrocíclicos/química , Compostos Organometálicos/química , Cor , Soluções , Compostos de Sulfidrila/química
14.
Dalton Trans ; 50(40): 14303-14308, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34554167

RESUMO

The supramolecular self-assembly synthetic strategy provides a valid tool to obtain polynuclear Fe(II) complexes having effective communication between the metal centres and distinct spin crossover behaviour. Despite the great success in constructing various magnetic molecules, progress has not been made in SCO complexes based on azido bridges. In this article, the coordination-driven supramolecular assembly based on 3,6-substituted pyridazine and azide is presented to afford two Fe(II) grid-like complexes: [(L)4FeII4(N3)4][BPh4]4·sol (1, L = 3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine and 2, L = 3,6-di(pyridin-2-yl)pyridazine). The substitution of pyridinyl groups in 2 instead of pyrazolyl ones in 1 led to the only example exhibiting spin-crossover behaviour (T1/2 = 230 K) among the azido-bridged complexes. In addition, a temperature-dependent photoluminescence study of 2 demonstrates a visible synergetic effect between the SCO event and the luminescence.

15.
JACS Au ; 1(2): 174-186, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33778810

RESUMO

Optical microscopy techniques are ideal for live cell imaging for real-time nanoparticle tracking of nanoparticle localization. However, the quantification of nanoparticle uptake is usually evaluated by analytical methods that require cell isolation. Luminescent labeling of gold nanoparticles with transition metal probes yields particles with attractive photophysical properties, enabling cellular tracking using confocal and time-resolved microscopies. In the current study, gold nanoparticles coated with a red-luminescent ruthenium transition metal complex are used to quantify and track particle uptake and localization. Analysis of the red-luminescence signal from particles is used as a metric of cellular uptake, which correlates to total cellular gold and ruthenium content, independently measured and correlated by inductively coupled plasma mass spectrometry. Tracking of the luminescence signal provides evidence of direct diffusion of the nanoparticles across the cytoplasmic membrane with particles observed in the cytoplasm and mitochondria as nonclustered "free" nanoparticles. Electron microscopy and inhibition studies identified macropinocytosis of clusters of particles into endosomes as the major mechanism of uptake. Nanoparticles were tracked inside GFP-tagged cells by following the red-luminescence signal of the ruthenium complex. Tracking of the particles demonstrates their initial location in early endosomes and, later, in lysosomes and autophagosomes. Colocalization was quantified by calculating the Pearson's correlation coefficient between red and green luminescence signals and confirmed by electron microscopy. Accumulation of particles in autophagosomes correlated with biochemical evidence of active autophagy, but there was no evidence of detachment of the luminescent label or breakup of the gold core. Instead, accumulation of particles in autophagosomes caused organelle swelling, breakdown of the surrounding membranes, and endosomal release of the nanoparticles into the cytoplasm. The phenomenon of endosomal release has important consequences for the toxicity, cellular targeting, and therapeutic future applications of gold nanoparticles.

16.
Int J Biol Macromol ; 183: 1236-1247, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33965488

RESUMO

Microencapsulation is a potential biotechnological tool, which can overcome antimicrobial peptides (AMP) instabilities and reduce toxic side effects. Thus, this study evaluates the antibacterial activities of the Ctx(Ile21)-Ha AMP against multidrug-resistant (MDR) and non-resistant bacteria and develop and characterize peptide-loaded microparticles coated with the enteric polymers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydroxypropylmethylcellulose phthalate (HPMCP). Ctx(Ile21)-Ha was obtained by solid phase peptide synthesis (SPPS) method, purified and characterized by HPLC and Mass Spectrometry. The peptide exhibited potent antibiotic activities against Salmonella enteritidis, Salmonella typhimurium, Pseudomonas aeruginosa (MDR), Acinetobacter baumannii (MDR), and Staphylococcus aureus (MDR). Ctx(Ile21)-Ha microencapsulation was performed by ionic gelation with high efficiency, maintaining the physical-chemical stability. Ctx(Ile21)-Ha coated-microparticles were characterized by DSC, TGA, FTIR-Raman, XRD and SEM. Hemolytic activity assay demonstrated that hemolysis was decreased up to 95% compared to single molecule. In addition, in vitro release control profile simulating different portions of gastrointestinal tract was performed and showed the microcapsules' ability to protect the peptide and release it in the intestine, aiming pathogen's location, mainly by Salmonella sp. Therefore, use of microencapsulated Ctx(Ile21)-Ha can be allowed as an antimicrobial controller in monogastric animal production as an oral feed additive (antimicrobial controller), being a valuable option for molecules with low therapeutic indexes or high hemolytic rates.


Assuntos
Alginatos/química , Metilcelulose/análogos & derivados , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Composição de Medicamentos , Aditivos Alimentares/química , Aditivos Alimentares/farmacologia , Hemólise , Metilcelulose/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Proteínas Citotóxicas Formadoras de Poros/química , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
19.
Phys Chem Chem Phys ; 12(22): 5868-71, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20454737

RESUMO

Dynamic nuclear polarization (DNP) has become an attractive technique to boost the sensitivity of NMR experiments. In the case of ex situ polarizations two-dimensional (2D) spectra are limited by the short lifetime of the polarization after dissolution and sample transfer to a high field NMR magnet. This limitation can be overcome by various approaches. Here we show how the use of (13)C-labelled acetyl tags can help to obtain 2D-HMQC spectra for many small molecules, owing to a nuclear Overhauser enhancement between (13)C spins originating from the long-lived carbonyl carbon, which extends the lifetimes of other (13)C spins with shorter longitudinal relaxation times. We also show an alternative approach of using an optimized polarization matrix.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Acetatos/química , Anisóis/química , Isótopos de Carbono/química , Cloretos/química
20.
Dalton Trans ; 49(27): 9218-9222, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32573643

RESUMO

The self-assembly of Co(ii) salts, pyridazine derivatives and azides afforded two azido-bridged [2×2] grid-type complexes {[(L)4CoII4(N3)4][BPh4]4}·sol (1, L = 3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine (pzdz) and sol = 4CH3CN·3CHCl3·2CH3OH and 2, L = 3,6-di(pyridin-2-yl)pyridazine (pydz) and sol = 4CH3CN). Upon comparison with other related grid-like complexes, the incorporation of end-on azido-bridges resulted in overall intramolecular ferromagnetic couplings, and thus endowed complexes 1 and 2 single molecule magnet behaviour with field-induced slow magnetic relaxation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa