Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36234249

RESUMO

Fullerene derivatives offer great scope for modification of the basic molecule, often called a buckyball. In recent years, they have been the subject of numerous studies, in particular in terms of their applications, including in solar cells. Here, the properties of four recently synthesized fullerene C60 derivatives were examined regarding their optical properties and the efficiency of the charge transfer process, both in fullerene derivatives themselves and in their heterojunctions with poly (3-hexylthiophene). Optical absorption, electron spin resonance (ESR), and time-resolved photoluminescence (TRPL) techniques were applied to study the synthesized molecules. It was shown that the absorption processes in fullerene derivatives are dominated by absorption of the fullerene cage and do not significantly depend on the type of the derivative. It was also found by ESR and TRPL studies that asymmetrical, dipole-like derivatives exhibit stronger light-induced charge transfer properties than their symmetrical counterparts. The observed inhomogeneous broadening of the ESR lines indicated a large disorder of all polymer-fullerene derivative blends. The density functional theory was applied to explain the results of the optical absorption experiments.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 181: 208-217, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28364668

RESUMO

Theoretical studies of polyazomethines (PAZs) with various chemical structures designated for photovoltaic applications are presented. PAZ energy levels and optical properties were calculated within density-functional theory (DFT and TDDFT) framework for 28 oligomers (monomer, dimer and trimer) of PAZs. The correlations between chemical structure of PAZ and location of its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were examined. It turned out that the presence of triaminophenylene, dimethoxydiphenylene and fluorine group raises the orbital energies. As a consequence, it is a factor which improves the photovoltaic efficiency of solar cell built on the base of the corresponding PAZ and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). On the contrary, quinone, 1,3,5-triazine and perfluorophenylene groups lower orbital energies and have negative influence on the photovoltaic efficiency. Moreover, calculations for methyl, ethyl and butyl analogs of P3HT as well as polythiophenes were performed and compared with the results obtained for PAZs. In addition experimental data are presented, which cover optical, electrochemical and electrical transport properties of the studied PAZs, allowing to determine HOMO and LUMO energies of the polymers and their conductivity. Finally, comparison between calculated and experimental results were made and discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa