Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Infect Dis ; 222(9): 1505-1516, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31970394

RESUMO

BACKGROUND: Bacterial toxins disrupt plasma membrane integrity with multitudinous effects on host cells. The secreted pore-forming toxin listeriolysin O (LLO) of the intracellular pathogen Listeria monocytogenes promotes egress of the bacteria from vacuolar compartments into the host cytosol often without overt destruction of the infected cell. Intracellular LLO activity is tightly controlled by host factors including compartmental pH, redox, proteolytic, and proteostatic factors, and inhibited by cholesterol. METHODS: Combining infection studies of L. monocytogenes wild type and isogenic mutants together with biochemical studies with purified phospholipases, we investigate the effect of their enzymatic activities on LLO. RESULTS: Here, we show that phosphocholine (ChoP), a reaction product of the phosphatidylcholine-specific phospholipase C (PC-PLC) of L. monocytogenes, is a potent inhibitor of intra- and extracellular LLO activities. Binding of ChoP to LLO is redox-independent and leads to the inhibition of LLO-dependent induction of calcium flux, mitochondrial damage, and apoptosis. ChoP also inhibits the hemolytic activities of the related cholesterol-dependent cytolysins (CDC), pneumolysin and streptolysin. CONCLUSIONS: Our study uncovers a strategy used by L. monocytogenes to modulate cytotoxic LLO activity through the enzymatic activity of its PC-PLC. This mechanism appears to be widespread and also used by other CDC pore-forming toxin-producing bacteria.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas Hemolisinas/antagonistas & inibidores , Listeria monocytogenes/efeitos dos fármacos , Fosforilcolina/farmacologia , Apoptose , Cálcio/metabolismo , Caspase 3/metabolismo , Células HeLa , Humanos , Listeria monocytogenes/enzimologia , Listeria monocytogenes/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Curr Top Microbiol Immunol ; 399: 113-132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27726006

RESUMO

Listeria monocytogenes is a ubiquitously occurring gram-positive bacterium in the environment that causes listeriosis, one of the deadliest foodborne infections known today. It is a versatile facultative intracellular pathogen capable of growth within the host's cytosolic compartment. Following entry into the host cell, L. monocytogenes escapes from vacuolar compartments to the cytosol, where the bacterium begins a remarkable journey within the host cytoplasm, culminating in bacterial spread from cell to cell, to deeper tissues and organs. This dissemination process depends on the ability of the bacterium to harness central components of the host cell actin cytoskeleton using the surface bound bacterial factor ActA (actin assembly inducing protein). Hence ActA plays a major role in listerial virulence, and its absence renders bacteria intracellularly immotile and essentially non-infectious. As the bacterium, moving by building a network of filamentous actin behind itself that is often referred to as its actin tail, encounters cell-cell contacts it forms double-vacuolar protrusions that allow it to enter the neighboring cell where the cycle then continues. Recent studies have now implicated ActA in other stages of the life cycle of L. monocytogenes. These include extracellular properties of aggregation and biofilm formation to mediate colonization of the gut lumen, promotion and enhancement of bacterial host cell entry, evasion of autophagy, vacuolar exit, as well as nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) activation. These novel properties provide a new view of ActA and help explain its role as an essential virulence factor of L. monocytogenes.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Listeriose/microbiologia , Proteínas de Membrana/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Proteínas de Membrana/genética , Virulência , Fatores de Virulência/genética
3.
J Infect Dis ; 211(2): 306-16, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25183769

RESUMO

Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Inflamação , Transdução de Sinais/efeitos dos fármacos , Streptococcus pneumoniae/imunologia , Estresse Fisiológico , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos , NF-kappa B/metabolismo
4.
Cell Microbiol ; 14(6): 949-64, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22321539

RESUMO

The endoplasmic reticulum (ER) responds to perturbation of homeostasis with stress. To maintain ER function, a signalling-circuitry has evolved which, when engaged, attempts to reduce a surplus of unfolded proteins by triggering the unfolded protein response (UPR). Several studies have implicated UPR in viral infections, neurodegenerative disorders and metabolic diseases but UPR has not yet been widely linked to bacterial infections. Here we demonstrate that the facultative intracellular pathogen Listeria monocytogenes (Lm) induces ER expansion and UPR prior to host cell entry. Lm activated protein kinase RNA-like ER kinase (PERK) evidenced by the phosphorylation of the α-subunit of eukaryotic translation initiation factor-2 (eIF2α), inositol-requiring protein-1 (IRE1) as shown by detection of spliced X-box binding protein-1 (XBP1) and activating transcription factor-6 (ATF6) as demonstrated by depletion of its inactive form. A mutant LmΔhly strain that did not produce listeriolysin (LLO) lacked the UPR response. Conversely purified LLO activated UPR. Sustained infection with Lm resulted in apoptosis. Induction of ER stress by thapsigargin or tunicamycin reduced intracellular bacterial number. Our findings suggest that UPR plays an important role in the cell autonomous defence responses to bacterial infection.


Assuntos
Interações Hospedeiro-Patógeno , Listeria monocytogenes/fisiologia , Resposta a Proteínas não Dobradas , Fator 6 Ativador da Transcrição/metabolismo , Animais , Apoptose , Toxinas Bacterianas/metabolismo , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/patologia , Chaperona BiP do Retículo Endoplasmático , Inibidores Enzimáticos/farmacologia , Células HeLa , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/fisiologia , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/fisiologia , Humanos , Imunidade Inata , Listeria monocytogenes/imunologia , Camundongos , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Tapsigargina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tunicamicina/farmacologia , Regulação para Cima , Proteína 1 de Ligação a X-Box
6.
mBio ; 10(5)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594810

RESUMO

Cellular sensing of bacterial RNA is increasingly recognized as a determinant of host-pathogen interactions. The intracellular pathogen Listeria monocytogenes induces high levels of type I interferons (alpha/beta interferons [IFN-α/ß]) to create a growth-permissive microenvironment during infection. We previously demonstrated that RNAs secreted by L. monocytogenes (comprising the secRNome) are potent inducers of IFN-ß. We determined the composition and diversity of the members of the secRNome and found that they are uniquely enriched for noncoding small RNAs (sRNAs). Testing of individual sRNAs for their ability to induce IFN revealed several sRNAs with this property. We examined ril32, an intracellularly expressed sRNA that is highly conserved for the species L. monocytogenes and that was the most potent inducer of IFN-ß expression of all the sRNAs tested in this study, in more detail. The rli32-induced IFN-ß response is RIG-I (retinoic acid inducible gene I) dependent, and cells primed with rli32 inhibit influenza virus replication. We determined the rli32 motif required for IFN induction. rli32 overproduction promotes intracellular bacterial growth, and a mutant lacking rli32 is restricted for intracellular growth in macrophages. rli32-overproducing bacteria are resistant to H2O2 and exhibit both increased catalase activity and changes in the cell envelope. Comparative transcriptome sequencing (RNA-Seq) analysis indicated that ril32 regulates expression of the lhrC locus, previously shown to be involved in cell envelope stress. Inhibition of IFN-ß signaling by ruxolitinib reduced rli32-dependent intracellular bacterial growth, indicating a link between induction of the interferon system and bacterial physiology. rli32 is, to the best of our knowledge, the first secreted individual bacterial sRNA known to trigger the induction of the type I IFN response.IMPORTANCE Interferons are potent and broadly acting cytokines that stimulate cellular responses to nucleic acids of unusual structures or locations. While protective when induced following viral infections, the induction of interferons is detrimental to the host during L. monocytogenes infection. Here, we identify specific sRNAs, secreted by the bacterium, with the capacity to induce type I IFN. Further analysis of the most potent sRNA, rli32, links the ability to induce RIG-I-dependent induction of the type I IFN response to the intracellular growth properties of the bacterium. Our findings emphasize the significance of released RNA for Listeria infection and shed light on a compartmental strategy used by an intracellular pathogen to modulate host responses to its advantage.


Assuntos
Fatores Imunológicos/metabolismo , Interferon beta/metabolismo , Listeria monocytogenes/imunologia , Listeria monocytogenes/metabolismo , Macrófagos/microbiologia , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Animais , Células Cultivadas , Deleção de Genes , Listeria monocytogenes/genética , Camundongos Endogâmicos C57BL , RNA Bacteriano/genética , RNA Bacteriano/imunologia , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/imunologia
7.
Sci Rep ; 8(1): 15846, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367146

RESUMO

The lytic capacity of cholesterol-dependent cytolysins is enhanced in the extracellular calcium-free environment through a combination of limited membrane repair and diminished membrane toxin removal. For a typical neurotoxin of the group, pneumolysin, this effect has already been observed at reduced (1 mM) calcium conditions, which are pathophysiologically relevant. Here, we tested another neurotoxin of the group, listeriolysin O from L. monocytogenes, active in the primary vacuole after bacterium phagocytosis in host cells. Reduced calcium did not increase the lytic capacity of listeriolysin (in contrast to pneumolysin), while calcium-free conditions elevated it 2.5 times compared to 10 times for pneumolysin (at equivalent hemolytic capacities). To clarify these differences, we analyzed membrane vesicle shedding, known to be a calcium-dependent process for toxin removal from eukaryotic cell membranes. Both pneumolysin and listeriolysin initiated vesicle shedding, which was completely blocked by the lack of extracellular calcium. Lack of calcium, however, elevated the toxin load per a cell only for pneumolysin and not for listeriolysin. This result indicates that vesicle shedding does not play a role in the membrane removal of listeriolysin and outlines a major difference between it and other members of the CDC group. Furthermore, it provides new tools for studying membrane vesicle shedding.


Assuntos
Toxinas Bacterianas/farmacologia , Cálcio/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proteínas de Choque Térmico/farmacologia , Proteínas Hemolisinas/farmacologia , Listeria monocytogenes/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas de Bactérias/farmacologia , Células Cultivadas , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estreptolisinas/farmacologia
8.
Toxins (Basel) ; 10(2)2018 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-29439494

RESUMO

Pulmonary permeability edema is characterized by reduced alveolar Na⁺ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na⁺ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel's expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na⁺ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema.


Assuntos
Toxinas Bacterianas/toxicidade , Canais Epiteliais de Sódio/fisiologia , Proteínas de Choque Térmico/toxicidade , Proteínas Hemolisinas/toxicidade , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Edema Pulmonar/tratamento farmacológico , Animais , Brônquios/citologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Humanos , Proteínas Imediatamente Precoces/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Toxins (Basel) ; 9(9)2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28872615

RESUMO

Autophagy, a well-established defense mechanism, enables the elimination of intracellular pathogens including Listeria monocytogenes. Host cell recognition results in ubiquitination of L. monocytogenes and interaction with autophagy adaptors p62/SQSTM1 and NDP52, which target bacteria to autophagosomes by binding to microtubule-associated protein 1 light chain 3 (LC3). Although studies have indicated that L. monocytogenes induces autophagy, the significance of this process in the infectious cycle and the mechanisms involved remain poorly understood. Here, we examined the role of the autophagy adaptor optineurin (OPTN), the phosphorylation of which by the TANK binding kinase 1 (TBK1) enhances its affinity for LC3 and promotes autophagosomal degradation, during L. monocytogenes infection. In LC3- and OPTN-depleted host cells, intracellular replicating L. monocytogenes increased, an effect not seen with a mutant lacking the pore-forming toxin listeriolysin O (LLO). LLO induced the production of OPTN. In host cells expressing an inactive TBK1, bacterial replication was also inhibited. Our studies have uncovered an OPTN-dependent pathway in which L. monocytogenes uses LLO to restrict bacterial growth. Hence, manipulation of autophagy by L. monocytogenes, either through induction or evasion, represents a key event in its intracellular life style and could lead to either cytosolic growth or persistence in intracellular vacuolar structures.


Assuntos
Toxinas Bacterianas/farmacologia , Proteínas de Choque Térmico/farmacologia , Proteínas Hemolisinas/farmacologia , Listeria monocytogenes/crescimento & desenvolvimento , Fator de Transcrição TFIIIA/biossíntese , Autofagia , Proteínas de Ciclo Celular , Células HeLa , Humanos , Proteínas de Membrana Transportadoras , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima
10.
Front Immunol ; 8: 842, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785264

RESUMO

BACKGROUND: Streptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar-capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function. METHODS: The presence of α, ß, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α. RESULTS: HL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance. CONCLUSION: Our results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia.

11.
Mol Cell Pediatr ; 3(1): 9, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26883353

RESUMO

Bacterial infection often leads to cellular damage, primarily marked by loss of cellular integrity and cell death. However, in recent years, it is being increasingly recognized that, in individual cells, there are graded responses collectively termed cell-autonomous defense mechanisms that induce cellular processes designed to limit cell damage, enable repair, and eliminate bacteria. Many of these responses are triggered not by detection of a particular bacterial effector or ligand but rather by their effects on key cellular processes and changes in homeostasis induced by microbial effectors when recognized. These in turn lead to a decrease in essential cellular functions such as protein translation or mitochondrial respiration and the induction of innate immune responses that may be specific to the cellular deficit induced. These processes are often associated with specific cell compartments, e.g., the endoplasmic reticulum (ER). Under non-infection conditions, these systems are generally involved in sensing cellular stress and in inducing and orchestrating the subsequent cellular response. Thus, perturbations of ER homeostasis result in accumulation of unfolded proteins which are detected by ER stress sensors in order to restore the normal condition. The ER is also important during bacterial infection, and bacterial effectors that activate the ER stress sensors have been discovered. Increasing evidence now indicate that bacteria have evolved strategies to differentially activate different arms of ER stress sensors resulting in specific host cell response. In this review, we will describe the mechanisms used by bacteria to activate the ER stress sensors and discuss their role during infection.

12.
Future Microbiol ; 10(4): 583-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25865195

RESUMO

Listeria monocytogenes is a facultative intracellular bacterium causing listeriosis, a food-borne infection with a high mortality rate. The mechanisms and the role of cells and tissular components in generating protective adaptive immune responses are well studied, and cell biological studies provide a detailed understanding of the processes targeted by the bacterial products. Much less is known of the cellular responses activated to limit infection in individual cells when confronted with stress or infection. Eukaryotic cellular responses depend on multitiered homeostatic systems that ensure maintenance of proteostatis, organellar integrity, function and turnover, and overall cellular viability ('the cell-autonomous response'). Here, we review the cell-autonomous responses induced during extracellular and intracellular L. monocytogenes growth and discuss their contribution to limiting infection.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Listeria monocytogenes/imunologia , Listeria monocytogenes/fisiologia , Estresse Fisiológico , Animais , Humanos
13.
Front Physiol ; 5: 259, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25076911

RESUMO

RATIONALE: Antibiotic treatment of patients infected with G(-) or G(+) bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. METHODS: Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-α activity were assessed by Western blotting. RESULTS: GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-α activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. CONCLUSIONS: GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-α-induced pathway in the presence of PLY, the former of which dominates the latter.

14.
Toxins (Basel) ; 5(7): 1244-60, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23860351

RESUMO

Severe pneumonia is the main single cause of death worldwide in children under five years of age. The main etiological agent of pneumonia is the G+ bacterium Streptococcus pneumoniae, which accounts for up to 45% of all cases. Intriguingly, patients can still die days after commencing antibiotic treatment due to the development of permeability edema, although the pathogen was successfully cleared from their lungs. This condition is characterized by a dramatically impaired alveolar epithelial-capillary barrier function and a dysfunction of the sodium transporters required for edema reabsorption, including the apically expressed epithelial sodium channel (ENaC) and the basolaterally expressed sodium potassium pump (Na+-K+-ATPase). The main agent inducing this edema formation is the virulence factor pneumolysin, a cholesterol-binding pore-forming toxin, released in the alveolar compartment of the lungs when pneumococci are being lysed by antibiotic treatment or upon autolysis. Sub-lytic concentrations of pneumolysin can cause endothelial barrier dysfunction and can impair ENaC-mediated sodium uptake in type II alveolar epithelial cells. These events significantly contribute to the formation of permeability edema, for which currently no standard therapy is available. This review focuses on discussing some recent developments in the search for the novel therapeutic agents able to improve lung function despite the presence of pore-forming toxins. Such treatments could reduce the potentially lethal complications occurring after antibiotic treatment of patients with severe pneumonia.


Assuntos
Pulmão/microbiologia , Pneumonia/terapia , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/toxicidade , Animais , Proteínas de Bactérias/toxicidade , Pré-Escolar , Modelos Animais de Doenças , Hormônio do Crescimento/metabolismo , Humanos , Sistema Imunitário/microbiologia , Lectinas/uso terapêutico , Pulmão/patologia , Pneumonia/microbiologia , Edema Pulmonar/microbiologia , Edema Pulmonar/terapia , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa