Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nucleic Acids Res ; 51(17): 9055-9074, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37470997

RESUMO

The SWI/SNF family of ATP-dependent chromatin remodeling complexes is implicated in multiple DNA damage response mechanisms and frequently mutated in cancer. The BAF, PBAF and ncBAF complexes are three major types of SWI/SNF complexes that are functionally distinguished by their exclusive subunits. Accumulating evidence suggests that double-strand breaks (DSBs) in transcriptionally active DNA are preferentially repaired by a dedicated homologous recombination pathway. We show that different BAF, PBAF and ncBAF subunits promote homologous recombination and are rapidly recruited to DSBs in a transcription-dependent manner. The PBAF and ncBAF complexes promote RNA polymerase II eviction near DNA damage to rapidly initiate transcriptional silencing, while the BAF complex helps to maintain this transcriptional silencing. Furthermore, ARID1A-containing BAF complexes promote RNaseH1 and RAD52 recruitment to facilitate R-loop resolution and DNA repair. Our results highlight how multiple SWI/SNF complexes perform different functions to enable DNA repair in the context of actively transcribed genes.


Assuntos
Proteínas Cromossômicas não Histona , Estruturas R-Loop , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA , Reparo do DNA/genética , Recombinação Homóloga/genética , Humanos
2.
Mol Cell ; 61(4): 547-562, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26895424

RESUMO

The response to DNA double-strand breaks (DSBs) requires alterations in chromatin structure to promote the assembly of repair complexes on broken chromosomes. Non-homologous end-joining (NHEJ) is the dominant DSB repair pathway in human cells, but our understanding of how it operates in chromatin is limited. Here, we define a mechanism that plays a crucial role in regulating NHEJ in chromatin. This mechanism is initiated by DNA damage-associated poly(ADP-ribose) polymerase 1 (PARP1), which recruits the chromatin remodeler CHD2 through a poly(ADP-ribose)-binding domain. CHD2 in turn triggers rapid chromatin expansion and the deposition of histone variant H3.3 at sites of DNA damage. Importantly, we find that PARP1, CHD2, and H3.3 regulate the assembly of NHEJ complexes at broken chromosomes to promote efficient DNA repair. Together, these findings reveal a PARP1-dependent process that couples ATP-dependent chromatin remodeling with histone variant deposition at DSBs to facilitate NHEJ and safeguard genomic stability.


Assuntos
Cromatina/genética , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Células HEK293 , Humanos , Poli(ADP-Ribose) Polimerase-1
3.
Nucleic Acids Res ; 48(1): 231-248, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31722399

RESUMO

Cockayne Syndrome (CS) is a severe neurodegenerative and premature aging autosomal-recessive disease, caused by inherited defects in the CSA and CSB genes, leading to defects in transcription-coupled nucleotide excision repair (TC-NER) and consequently hypersensitivity to ultraviolet (UV) irradiation. TC-NER is initiated by lesion-stalled RNA polymerase II, which stabilizes the interaction with the SNF2/SWI2 ATPase CSB to facilitate recruitment of the CSA E3 Cullin ubiquitin ligase complex. However, the precise biochemical connections between CSA and CSB are unknown. The small ubiquitin-like modifier SUMO is important in the DNA damage response. We found that CSB, among an extensive set of other target proteins, is the most dynamically SUMOylated substrate in response to UV irradiation. Inhibiting SUMOylation reduced the accumulation of CSB at local sites of UV irradiation and reduced recovery of RNA synthesis. Interestingly, CSA is required for the efficient clearance of SUMOylated CSB. However, subsequent proteomic analysis of CSA-dependent ubiquitinated substrates revealed that CSA does not ubiquitinate CSB in a UV-dependent manner. Surprisingly, we found that CSA is required for the ubiquitination of the largest subunit of RNA polymerase II, RPB1. Combined, our results indicate that the CSA, CSB, RNA polymerase II triad is coordinated by ubiquitin and SUMO in response to UV irradiation. Furthermore, our work provides a resource of SUMO targets regulated in response to UV or ionizing radiation.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Reparo do DNA , Proteínas de Ligação a Poli-ADP-Ribose/genética , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Fatores de Transcrição/genética , Transcrição Gênica , Ubiquitina/genética , Linhagem Celular Transformada , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/efeitos da radiação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Raios Ultravioleta
4.
Cell Mol Life Sci ; 77(10): 2005-2016, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31392348

RESUMO

The effectiveness of many DNA-damaging chemotherapeutic drugs depends on their ability to form monoadducts, intrastrand crosslinks and/or interstrand crosslinks (ICLs) that interfere with transcription and replication. The ERCC1-XPF endonuclease plays a critical role in removal of these lesions by incising DNA either as part of nucleotide excision repair (NER) or interstrand crosslink repair (ICLR). Engagement of ERCC1-XPF in NER is well characterized and is facilitated by binding to the XPA protein. However, ERCC1-XPF recruitment to ICLs is less well understood. Moreover, specific mutations in XPF have been found to disrupt its function in ICLR but not in NER, but whether this involves differences in lesion targeting is unknown. Here, we imaged GFP-tagged ERCC1, XPF and ICLR-defective XPF mutants to investigate how in human cells ERCC1-XPF is localized to different types of psoralen-induced DNA lesions, repaired by either NER or ICLR. Our results confirm its dependence on XPA in NER and furthermore show that its engagement in ICLR is dependent on FANCD2. Interestingly, we find that two ICLR-defective XPF mutants (R689S and S786F) are less well recruited to ICLs. These studies highlight the differential mechanisms that regulate ERCC1-XPF activity in DNA repair.


Assuntos
Proteínas de Ligação a DNA/genética , Endonucleases/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína de Xeroderma Pigmentoso Grupo A/genética , Linhagem Celular , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Ficusina/farmacologia , Humanos , Mutação/efeitos dos fármacos
5.
Nucleic Acids Res ; 47(8): 4011-4025, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30715484

RESUMO

Transcription-coupled nucleotide excision repair (TC-NER) is a dedicated DNA repair pathway that removes transcription-blocking DNA lesions (TBLs). TC-NER is initiated by the recognition of lesion-stalled RNA Polymerase II by the joint action of the TC-NER factors Cockayne Syndrome protein A (CSA), Cockayne Syndrome protein B (CSB) and UV-Stimulated Scaffold Protein A (UVSSA). However, the exact recruitment mechanism of these factors toward TBLs remains elusive. Here, we study the recruitment mechanism of UVSSA using live-cell imaging and show that UVSSA accumulates at TBLs independent of CSA and CSB. Furthermore, using UVSSA deletion mutants, we could separate the CSA interaction function of UVSSA from its DNA damage recruitment activity, which is mediated by the UVSSA VHS and DUF2043 domains, respectively. Quantitative interaction proteomics showed that the Spt16 subunit of the histone chaperone FACT interacts with UVSSA, which is mediated by the DUF2043 domain. Spt16 is recruited to TBLs, independently of UVSSA, to stimulate UVSSA recruitment and TC-NER-mediated repair. Spt16 specifically affects UVSSA, as Spt16 depletion did not affect CSB recruitment, highlighting that different chromatin-modulating factors regulate different reaction steps of the highly orchestrated TC-NER pathway.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/ultraestrutura , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Imagem Óptica , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
6.
Arch Toxicol ; 94(5): 1655-1671, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32189037

RESUMO

Damage to cellular macromolecules and organelles by chemical exposure evokes activation of various stress response pathways. To what extent different chemical stressors activate common and stressor-specific pathways is largely unknown. Here, we used quantitative phosphoproteomics to compare the signaling events induced by four stressors with different modes of action: the DNA damaging agent: cisplatin (CDDP), the topoisomerase II inhibitor: etoposide (ETO), the pro-oxidant: diethyl maleate (DEM) and the immunosuppressant: cyclosporine A (CsA) administered at an equitoxic dose to mouse embryonic stem cells. We observed major differences between the stressors in the number and identity of responsive phosphosites and the amplitude of phosphorylation. Kinase motif and pathway analyses indicated that the DNA damage response (DDR) activation by CDDP occurs predominantly through the replication-stress-related Atr kinase, whereas ETO triggers the DDR through Atr as well as the DNA double-strand-break-associated Atm kinase. CsA shares with ETO activation of CK2 kinase. Congruent with their known modes of action, CsA-mediated signaling is related to down-regulation of pathways that control hematopoietic differentiation and immunity, whereas oxidative stress is the most prominent initiator of DEM-modulated stress signaling. This study shows that even at equitoxic doses, different stressors induce distinctive and complex phosphorylation signaling cascades.


Assuntos
Proteoma/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Diferenciação Celular , Cisplatino/toxicidade , Quebras de DNA de Cadeia Dupla , Etoposídeo/toxicidade , Humanos , Camundongos , Estresse Oxidativo , Fosforilação , Transdução de Sinais , Inibidores da Topoisomerase II
7.
Trends Biochem Sci ; 38(6): 321-30, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23562323

RESUMO

Distinct types of DNA damage elicit signaling and repair pathways that counteract the adverse effect of DNA lesions to maintain genome stability. The negatively charged polymer poly(ADP-ribose), which is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes, is a post-translational modification that serves as a chromatin-based platform for the recruitment of a variety of repair factors and chromatin-remodeling enzymes. Recent work implicates PARP3 in the efficient joining of DNA double-strand breaks during non-homologous end-joining (NHEJ), whereas PARP1 modulates the repair of UV-induced DNA lesions. Here we discuss emerging roles of PARP enzymes in mechanistically distinct DNA repair pathways and highlight unresolved issues and questions for future research.


Assuntos
Dano ao DNA , Reparo do DNA , Poli(ADP-Ribose) Polimerases/metabolismo , Raios Ultravioleta
8.
Exp Cell Res ; 329(1): 116-23, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128816

RESUMO

Nucleotide excision repair (NER) is a key component of the DNA damage response (DDR) and it is essential to safeguard genome integrity against genotoxic insults. The regulation of NER is primarily mediated by protein post-translational modifications (PTMs). The NER machinery removes a wide spectrum of DNA helix distorting lesions, including those induced by solar radiation, through two sub-pathways: global genome nucleotide excision repair (GG-NER) and transcription coupled nucleotide excision repair (TC-NER). Severe clinical consequences associated with inherited NER defects, including premature ageing, neurodegeneration and extreme cancer-susceptibility, underscore the biological relevance of NER. In the last two decades most of the core NER machinery has been elaborately described, shifting attention to molecular mechanisms that either facilitate NER in the context of chromatin or promote the timely and accurate interplay between NER factors and various post-translational modifications. In this review, we summarize and discuss the latest findings in NER. In particular, we focus on emerging factors and novel molecular mechanisms by which NER is regulated.


Assuntos
Reparo do DNA/genética , Processamento de Proteína Pós-Traducional , Transcrição Gênica/genética , Animais , Humanos
9.
Nat Cell Biol ; 26(5): 770-783, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600236

RESUMO

DNA-protein crosslinks (DPCs) arise from enzymatic intermediates, metabolism or chemicals like chemotherapeutics. DPCs are highly cytotoxic as they impede DNA-based processes such as replication, which is counteracted through proteolysis-mediated DPC removal by spartan (SPRTN) or the proteasome. However, whether DPCs affect transcription and how transcription-blocking DPCs are repaired remains largely unknown. Here we show that DPCs severely impede RNA polymerase II-mediated transcription and are preferentially repaired in active genes by transcription-coupled DPC (TC-DPC) repair. TC-DPC repair is initiated by recruiting the transcription-coupled nucleotide excision repair (TC-NER) factors CSB and CSA to DPC-stalled RNA polymerase II. CSA and CSB are indispensable for TC-DPC repair; however, the downstream TC-NER factors UVSSA and XPA are not, a result indicative of a non-canonical TC-NER mechanism. TC-DPC repair functions independently of SPRTN but is mediated by the ubiquitin ligase CRL4CSA and the proteasome. Thus, DPCs in genes are preferentially repaired in a transcription-coupled manner to facilitate unperturbed transcription.


Assuntos
DNA Helicases , Enzimas Reparadoras do DNA , Reparo do DNA , Proteínas de Ligação a Poli-ADP-Ribose , Proteólise , RNA Polimerase II , Transcrição Gênica , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , DNA Helicases/metabolismo , DNA Helicases/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , DNA/metabolismo , DNA/genética , Células HEK293 , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Dano ao DNA , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Transporte , Receptores de Interleucina-17
10.
J Cell Sci ; 124(Pt 3): 435-46, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21224401

RESUMO

Activation of signaling pathways by UV radiation is a key event in the DNA damage response and initiated by different cellular processes. Here we show that non-cycling cells proficient in nucleotide excision repair (NER) initiate a rapid but transient activation of the damage response proteins p53 and H2AX; by contrast, NER-deficient cells display delayed but persistent signaling and inhibition of cell cycle progression upon release from G0 phase. In the absence of repair, UV-induced checkpoint activation coincides with the formation of single-strand DNA breaks by the action of the endonuclease Ape1. Although temporally distinct, activation of checkpoint proteins in NER-proficient and NER-deficient cells depends on a common pathway involving the ATR kinase. These data reveal that damage signaling in non-dividing cells proceeds via NER-dependent and NER-independent processing of UV photolesions through generation of DNA strand breaks, ultimately preventing the transition from G1 to S phase.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Histonas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Quebras de DNA de Cadeia Simples , Dano ao DNA/efeitos da radiação , DNA de Cadeia Simples/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Humanos , Fase de Repouso do Ciclo Celular/fisiologia , Transdução de Sinais/fisiologia , Raios Ultravioleta
11.
Magn Reson Med ; 69(5): 1245-52, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22791581

RESUMO

A hyperpolarized 129Xe contrast agent composed of many cryptophane-A molecular cages assembled on an M13 bacteriophage has been demonstrated. Saturation of xenon bound in the large number of cryptophane cages is transferred to the pool of aqueous-solvated xenon via chemical exchange, resulting in efficient generation of hyperCEST contrast. No significant loss of contrast per cryptophane cage was observed for the multivalent phage when compared with unscaffolded cryptophane. Detection of this phage-based hyperCEST agent is reported at concentrations as low as 230 fM, representing the current lower limit for NMR/MRI-based contrast agents.


Assuntos
Bacteriófagos/química , Técnicas Biossensoriais/métodos , Portadores de Fármacos/química , Espectroscopia de Ressonância Magnética/métodos , Imagem Molecular/métodos , Compostos Policíclicos/química , Isótopos de Xenônio/análise , Algoritmos , Meios de Contraste/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Isótopos de Xenônio/química
12.
DNA Repair (Amst) ; 130: 103566, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37716192

RESUMO

Transcription-blocking lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which prevents DNA damage-induced cellular toxicity and maintains proper transcriptional processes. TC-NER is initiated by the stalling of RNA polymerase II (RNAPII), which triggers the assembly of TC-NER-specific proteins, namely CSB, CSA and UVSSA, which collectively control and drive TC-NER progression. Previous research has revealed molecular functions for these proteins, however, exact mechanisms governing the initiation and regulation of TC-NER, particularly at low UV doses have remained elusive, partly due to technical constraints. In this study, we employ knock-in cell lines designed to target the endogenous CSB gene locus with mClover, a GFP variant. Through live cell imaging, we uncover the intricate molecular dynamics of CSB in response to physiologically relevant UV doses. We showed that the DNA damage-induced association of CSB with chromatin is tightly regulated by the CSA-containing ubiquitin-ligase CRL complex (CRL4CSA). Combining the CSB-mClover knock-in cell line with SILAC-based GFP-mediated complex isolation and mass-spectrometry-based proteomics, revealed novel putative CSB interactors as well as discernible variations in complex composition during distinct stages of TC-NER progression. Our work not only provides molecular insight into TC-NER, but also illustrates the versatility of endogenously tagging fluorescent and affinity tags.


Assuntos
Dano ao DNA , Reparo do DNA , Linhagem Celular , Cromatina , Espectrometria de Massas
13.
EMBO Mol Med ; 15(11): e17973, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37800682

RESUMO

The brittle hair syndrome Trichothiodystrophy (TTD) is characterized by variable clinical features, including photosensitivity, ichthyosis, growth retardation, microcephaly, intellectual disability, hypogonadism, and anaemia. TTD-associated mutations typically cause unstable mutant proteins involved in various steps of gene expression, severely reducing steady-state mutant protein levels. However, to date, no such link to instability of gene-expression factors for TTD-associated mutations in MPLKIP/TTDN1 has been established. Here, we present seven additional TTD individuals with MPLKIP mutations from five consanguineous families, with a newly identified MPLKIP variant in one family. By mass spectrometry-based interaction proteomics, we demonstrate that MPLKIP interacts with core splicing factors and the lariat debranching protein DBR1. MPLKIP-deficient primary fibroblasts have reduced steady-state DBR1 protein levels. Using Human Skin Equivalents (HSEs), we observed impaired keratinocyte differentiation associated with compromised splicing and eventually, an imbalanced proteome affecting skin development and, interestingly, also the immune system. Our data show that MPLKIP, through its DBR1 stabilizing role, is implicated in mRNA splicing, which is of particular importance in highly differentiated tissue.


Assuntos
Síndromes de Tricotiodistrofia , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Consanguinidade , Mutação , Fenótipo , Splicing de RNA , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo
14.
Res Sq ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37886519

RESUMO

Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we applied a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis showed that DDA1 is an integral component of the CRL4CSA complex. Functional analysis revealed that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.

15.
Nat Commun ; 13(1): 974, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190564

RESUMO

UV-DDB, consisting of subunits DDB1 and DDB2, recognizes UV-induced photoproducts during global genome nucleotide excision repair (GG-NER). We recently demonstrated a noncanonical role of UV-DDB in stimulating base excision repair (BER) which raised several questions about the timing of UV-DDB arrival at 8-oxoguanine (8-oxoG), and the dependency of UV-DDB on the recruitment of downstream BER and NER proteins. Using two different approaches to introduce 8-oxoG in cells, we show that DDB2 is recruited to 8-oxoG immediately after damage and colocalizes with 8-oxoG glycosylase (OGG1) at sites of repair. 8-oxoG removal and OGG1 recruitment is significantly reduced in the absence of DDB2. NER proteins, XPA and XPC, also accumulate at 8-oxoG. While XPC recruitment is dependent on DDB2, XPA recruitment is DDB2-independent and transcription-coupled. Finally, DDB2 accumulation at 8-oxoG induces local chromatin unfolding. We propose that DDB2-mediated chromatin decompaction facilitates the recruitment of downstream BER proteins to 8-oxoG lesions.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Guanina/análogos & derivados , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Dano ao DNA/efeitos da radiação , DNA Glicosilases/metabolismo , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Guanina/metabolismo , Guanina/efeitos da radiação , Células HEK293 , Humanos , Raios Ultravioleta/efeitos adversos , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
16.
DNA Repair (Amst) ; 8(2): 153-61, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18996499

RESUMO

UV-damaged DNA-binding protein (UV-DDB) is essential for global genome nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers (CPD) and accelerates repair of 6-4 photoproducts (6-4PP). The high UV-induced skin cancer susceptibility of mice compared to man has been attributed to low expression of the UV-DDB subunit DDB2 in mouse skin cells. However, DDB2 knockout mice exhibit enhanced UVB skin carcinogenesis indicating that DDB2 protects mice against UV-induced skin cancer. To resolve these apparent contradictory findings, we systematically investigated the NER capacity of mouse fibroblasts and keratinocytes. Compared to fibroblasts, keratinocytes exhibited an increased level of UV-DDB activity, contained significantly higher levels of other NER proteins (i.e. XPC and XPB) and displayed efficient repair of CPD. At low UVB dosages, the difference in skin cancer susceptibility between DDB2 KO and wild type mice was even much more pronounced than previously reported with high dose UVB exposures. Hence, our observations show that mouse keratinocytes express sufficient levels of UV-DDB for efficient repair of photolesions and efficient protection against UV-induced skin cancer at physiological relevant UV exposure.


Assuntos
Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta , Animais , Suscetibilidade a Doenças , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Cinética , Camundongos , Camundongos Pelados , Dímeros de Pirimidina/metabolismo
17.
Nat Commun ; 9(1): 1040, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531219

RESUMO

Transcription-blocking DNA lesions are removed by transcription-coupled nucleotide excision repair (TC-NER) to preserve cell viability. TC-NER is triggered by the stalling of RNA polymerase II at DNA lesions, leading to the recruitment of TC-NER-specific factors such as the CSA-DDB1-CUL4A-RBX1 cullin-RING ubiquitin ligase complex (CRLCSA). Despite its vital role in TC-NER, little is known about the regulation of the CRLCSA complex during TC-NER. Using conventional and cross-linking immunoprecipitations coupled to mass spectrometry, we uncover a stable interaction between CSA and the TRiC chaperonin. TRiC's binding to CSA ensures its stability and DDB1-dependent assembly into the CRLCSA complex. Consequently, loss of TRiC leads to mislocalization and depletion of CSA, as well as impaired transcription recovery following UV damage, suggesting defects in TC-NER. Furthermore, Cockayne syndrome (CS)-causing mutations in CSA lead to increased TRiC binding and a failure to compose the CRLCSA complex. Thus, we uncover CSA as a TRiC substrate and reveal that TRiC regulates CSA-dependent TC-NER and the development of CS.


Assuntos
Chaperonina com TCP-1/metabolismo , Dano ao DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Fatores de Transcrição/metabolismo , Raios Ultravioleta , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Chaperonina com TCP-1/genética , Síndrome de Cockayne/genética , Dano ao DNA/genética , Enzimas Reparadoras do DNA/genética , Humanos , Imunoprecipitação , Espectrometria de Massas , Microscopia de Fluorescência , Mutação/genética , Interferência de RNA , Fatores de Transcrição/genética , Transcrição Gênica/genética , Transcrição Gênica/efeitos da radiação
18.
J Magn Reson ; 188(1): 183-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17638585

RESUMO

Variable angle spinning (VAS) experiments can be used to measure long-range dipolar couplings and provide structural information about molecules in oriented media. We present a probe design for this type of experiment using a contactless resonator. In this circuit, RF power is transmitted wirelessly via coaxial capacitive coupling where the coupling efficiency is improved by replacing the ordinary sample coil with a double frequency resonator. Our probe constructed out of this design principle has shown favorable properties at variable angle conditions. Moreover, a switched angle spinning correlation experiment is performed to demonstrate the probe's capability to resolve dipolar couplings in strongly aligned molecules.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares
19.
Magn Reson Imaging ; 25(4): 449-52, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17466761

RESUMO

Remote detection nuclear magnetic resonance and magnetic resonance imaging can be used to study fluid flow and dispersion in a porous medium from a purely Eulerian point of view (i.e., in a laboratory frame of reference). Information about fluid displacement is obtained on a macroscopic scale in a long-time regime, while local velocity distributions are averaged out. It is shown how these experiments can be described using the common flow propagator formalism and how experimental data can be analyzed to obtain effective porosity, flow velocity inside the porous medium, fluid dispersion and flow tracing of fluid.


Assuntos
Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Modelos Teóricos , Porosidade , Reologia/métodos , Tempo
20.
Nucleic Acids Res ; 33(14): 4379-94, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16077024

RESUMO

Apurinic apyrimidinic endonuclease redox effector factor-1 (APE1/Ref-1) is involved both in the base excision repair (BER) of DNA lesions and in the eukaryotic transcriptional regulation. APE1/Ref-1 is regulated at both the transcriptional and post-translational levels, through control of subcellular localization and post-translational modification. In response to stress conditions, several cell types release ATP, which exerts stimulatory effects on eukaryotic cells via the purinergic receptors (P2) family. By using western blot and immunofluorescence analysis on a human tumour thyroid cell line (ARO), we demonstrate that purinergic stimulation by extracellular ATP induces quick cytoplasm to nucleus translocation of the protein at early times and its neosynthesis at later times. Continuous purinergic triggering by extracellular ATP released by ARO cells is responsible for the control of APE1/Ref-1 intracellular level. Interference with intracellular pathways activated by P2 triggering demonstrates that Ca2+ mobilization and intracellular reactive oxygen species (ROS) production are responsible for APE1/Ref-1 translocation. The APE1/Ref-1 activities on activator protein-1 (AP-1) DNA binding and DNA repair perfectly match its nuclear enrichment upon ATP stimulation. The biological relevance of our data is reinforced by the observation that APE1/Ref-1 stimulation by ATP protects ARO cells by H2O2-induced cell death. Our data provide new insights into the complex mechanisms regulating APE1/Ref-1 functions.


Assuntos
Trifosfato de Adenosina/farmacologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Cálcio/metabolismo , Morte Celular , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Humanos , Peróxido de Hidrogênio/toxicidade , NADPH Oxidases/metabolismo , Proteína Quinase C/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa