Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(5): 3254-3266, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742964

RESUMO

Testudines are a highly threatened group facing an array of stressors, including alteration of their sensory environment. Underwater noise pollution has the potential to induce hearing loss and disrupt detection of biologically important acoustic cues and signals. To examine the conditions that induce temporary threshold shifts (TTS) in hearing in the freshwater Eastern painted turtle (Chrysemys picta picta), three individuals were exposed to band limited continuous white noise (50-1000 Hz) of varying durations and amplitudes (sound exposure levels ranged from 151 to 171 dB re 1 µPa2 s). Control and post-exposure auditory thresholds were measured and compared at 400 and 600 Hz using auditory evoked potential methods. TTS occurred in all individuals at both test frequencies, with shifts of 6.1-41.4 dB. While the numbers of TTS occurrences were equal between frequencies, greater shifts were observed at 600 Hz, a frequency of higher auditory sensitivity, compared to 400 Hz. The onset of TTS occurred at 154 dB re 1 µPa2 s for 600 Hz, compared to 158 dB re 1 µPa2 s at 400 Hz. The 400-Hz onset and patterns of TTS growth and recovery were similar to those observed in previously studied Trachemys scripta elegans, suggesting TTS may be comparable across Emydidae species.


Assuntos
Estimulação Acústica , Limiar Auditivo , Tartarugas , Animais , Tartarugas/fisiologia , Fatores de Tempo , Ruído/efeitos adversos , Potenciais Evocados Auditivos/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Provocada por Ruído/etiologia , Masculino , Feminino , Audição/fisiologia
2.
J Acoust Soc Am ; 154(2): 1003-1017, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584467

RESUMO

Noise pollution in aquatic environments can cause hearing loss in noise-exposed animals. We investigated whether exposure to continuous underwater white noise (50-1000 Hz) affects the auditory sensitivity of an aquatic turtle Trachemys scripta elegans (red-eared slider) across 16 noise conditions of differing durations and amplitudes. Sound exposure levels (SELs) ranged between 155 and 193 dB re 1 µPa2 s, and auditory sensitivity was measured at 400 Hz using auditory evoked potential methods. Comparing control and post-exposure thresholds revealed temporary threshold shifts (TTS) in all three individuals, with at least two of the three turtles experiencing TTS at all but the two lowest SELs tested, and shifts up to 40 dB. There were significant positive relationships between shift magnitude and exposure duration, amplitude, and SEL. The mean predicted TTS onset was 160 dB re 1 µPa2 s. There was individual variation in susceptibility to TTS, threshold shift magnitude, and recovery rate, which was non-monotonic and occurred on time scales ranging from < 1 h to > 2 days post-exposure. Recovery rates were generally greater after higher magnitude shifts. Sound levels inducing hearing loss were comparatively low, suggesting aquatic turtles may be more sensitive to underwater noise than previously considered.


Assuntos
Surdez , Perda Auditiva Provocada por Ruído , Tartarugas , Animais , Perda Auditiva Provocada por Ruído/etiologia , Ruído/efeitos adversos , Potenciais Evocados Auditivos , Limiar Auditivo/fisiologia , Fadiga Auditiva
3.
J Zoo Wildl Med ; 45(1): 86-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24712166

RESUMO

Sedation or anesthesia of hatchling leatherback sea turtles was employed to acquire auditory evoked potential (AEP) measurements in air and in water to assess their hearing sensitivity in relation to potential consequences from anthropogenic noise. To reduce artifacts in AEP collection caused by muscle movement, hatchlings were sedated with midazolam 2 or 3 mg/kg i.v. for in-air (n = 7) or in-water (n = 11) AEP measurements; hatchlings (n = 5) were anesthetized with ketamine 6 mg/kg and dexmedetomidine 30 microg/kg i.v. reversed with atipamezole 300 microg/kg, half i.m. and half i.v. for in-air AEP measurements. Midazolam-sedated turtles were also physically restrained with a light elastic wrap. For in-water AEP measurements, sedated turtles were brought to the surface every 45-60 sec, or whenever they showed intention signs for breathing, and not submerged again until they took a breath. Postprocedure temperature-corrected venous blood pH, pCO2, pO2, and HCO3- did not differ among groups, although for the midazolam-sedated in-water group, pCO2 trended lower, and in the ketamine-dexmedetomidine anesthetized group there was one turtle considered clinically acidotic (temperature-corrected pH = 7.117). Venous blood lactate was greater for hatchlings recently emerged from the nest than for turtles sedated with midazolam in air, with the other two groups falling intermediate between, but not differing significantly from the high and low lactate groups. Disruptive movements were less frequent with anesthesia than with sedation in the in-air group. Both sedation with midazolam and anesthesia with ketamine-dexmedetomidine were successful for allowing AEP measurements in hatchling leatherback sea turtles. Sedation allowed the turtle to protect its airway voluntarily while limiting flipper movement. Midazolam or ketamine-dexmedetomidine (and reversal with atipamezole) would be useful for other procedures requiring minor or major restraint in leatherback sea turtle hatchlings and other sea turtles, although variable susceptibilities may require dose adjustments.


Assuntos
Anestesia/veterinária , Dexmedetomidina/farmacologia , Potenciais Evocados Auditivos/fisiologia , Ketamina/farmacologia , Midazolam/farmacologia , Tartarugas/fisiologia , Anestésicos/administração & dosagem , Anestésicos/farmacologia , Animais , Dexmedetomidina/administração & dosagem , Quimioterapia Combinada , Meio Ambiente , Hipnóticos e Sedativos/farmacologia , Ketamina/administração & dosagem
4.
PLoS One ; 16(7): e0253770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197521

RESUMO

Although the visual and geomagnetic orientation cues used by sea turtle hatchlings during sea-finding have been well studied, the potential for auditory stimuli to act as an orientation cue has not been explored. We investigated the response of sea turtle hatchlings to natural and anthropogenic noises present on their nesting beaches during sea-finding. The responses of hatchling leatherback sea turtles, Dermochelys coriacea, collected from the Sandy Point National Wildlife Refuge, St. Croix, were measured in the presence of aerial acoustic sounds within hatchlings' hearing range of 50 to 1600 Hz. The highest sound energy produced by beach waves occurs at frequencies 50-1000 Hz, which overlaps with the most sensitive hearing range of hatchling leatherbacks (50-400 Hz). Natural beach wave sounds, which have highest sound energy at frequencies of 50-1000 Hz, may be masked by human conversations (85-650 Hz) and vehicle traffic noise (60-8000 Hz). In the presence of three stimuli, a) beach wave sounds (72.0 dB re: 20 µPa), b) human conversation (72.4 dB re: 20 µPa), and c) vehicle traffic noise (71.1 dB re: 20 µPa), hatchlings exhibited no phonotaxic response (wave sounds: mean angle = 152.1°, p = 0.645; human conversation: mean angle = 67.4°, p = 0.554; traffic noise: mean angle = 125.7°, p = 0.887). These results may be due to the hatchlings being unable to localize sounds in the experimental arena. Visual and auditory cues may also converge to affect sea-finding orientation. Future studies should focus on the localization ability of sea turtles and on the role that sound may play in orientation when combined with other sensory and environmental cues.


Assuntos
Animais Recém-Nascidos/fisiologia , Sinais (Psicologia) , Audição/fisiologia , Orientação Espacial/fisiologia , Tartarugas/fisiologia , Acústica , Animais , Comportamento de Nidação
5.
PLoS One ; 11(10): e0159711, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741231

RESUMO

Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Tartarugas/fisiologia , Estimulação Acústica , Ar/análise , Animais , Limiar Auditivo/fisiologia , Tartarugas/crescimento & desenvolvimento , Água/química
6.
J Am Assoc Lab Anim Sci ; 52(6): 792-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24351768

RESUMO

Investigations into the biology of aquatic and semiaquatic species, including those involving sensory specialization, often require creative solutions to novel questions. We developed a technique for safely anesthetizing a semiaquatic chelonian species, the diamondback terrapin (Malaclemys terrapin), for measurement of auditory evoked potentials while animals were completely submerged in water. Custom-modified endotracheal tubes were used to obtain a watertight seal on both sides of the glottis and prevent aspiration of water during testing. No adverse effects were seen after the procedures, and assessment of venous blood-gas partial pressures and lactate concentrations indicated that sufficient gas exchange was maintained under anesthesia through manual ventilation.


Assuntos
Anestesia/veterinária , Potenciais Evocados Auditivos , Tartarugas/fisiologia , Anestesia/métodos , Anestésicos Dissociativos/administração & dosagem , Animais , Dexmedetomidina/administração & dosagem , Feminino , Hipnóticos e Sedativos/administração & dosagem , Ketamina/administração & dosagem , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa