Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(42): 23320-23328, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31432803

RESUMO

Applications of self-assembled monolayers (SAMs) on surfaces are prevalent in modern technologies and drives the need for a better understanding of the surface domain architecture of SAMs. To explore structural interaction at the interface between gold surfaces and a hydroxyl-terminated alkanethiol, 11-hydroxy-1-undecanethiol, (C11TH) we have employed a combined computational and experimental approach. Density functional theory (DFT) calculations were carried out on the thiol-gold interface using both the Perdew-Burke-Ernzerhof (PBE) and van der Waals (optB86b) density functionals. Our ab initio molecular dynamics (AIMD) simulations revealed that the interface consists of four different distinguished phases, each with different C11TH orientations. Experiments involved deposition of C11TH SAMs onto gold, with the resultant surfaces examined with X-ray photoelectron spectroscopy (XPS) and ellipsometry. Weighted average projected density of states (PDOS) of the different phases were photoionization cross section corrected and these were confirmed by experimental XPS data. Computed molecular parameters including tilt angles and the thickness of SAMs also agreed with the XPS and ellipsometry results. Hydrogen bonding arising from the terminal hydroxyl groups is the primary factor governing the stability of the four phases. Experimental results from XPS and ellipsometry along with DFT simulation results provide insights into the formation of the different orientations of SAM on Au(111) which will guide future efforts in the self-assembled SAMs architecture for other thiols or metal substrates.

2.
Phys Chem Chem Phys ; 19(42): 28982-28992, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29063085

RESUMO

Acquiring quantitative information on charge transfer (CT) dynamics at the nanoscale remains an important scientific challenge. In particular, CT processes in single molecules at surfaces need to be investigated to be properly controlled in various devices. To address this issue, the dynamics of switching molecules can be exploited. Here, nickel-tetraphenylporphyrin adsorbed on the Si(100) surface is used to study the CT process ruling the reversible activation of two chiral molecular conformations. Via the electrons of a scanning tunneling microscope (STM), a statistical study of molecular switching reveals two specific locations of the molecule for which their efficiency is optimized. The CT mechanism is shown to propagate from two lateral aryl groups towards the porphyrin macrocycle inducing an intramolecular movement of two symmetric pyrroles. The measured switching efficiencies can thus be related to a Markus-Jordner model to estimate relevant parameters that describe the dynamics of the CT process. Numerical simulations provide a precise description of the molecular conformations and unveil the molecular energy levels that are involved in the CT process. This quantitative method opens a completely original approach to study CT at the nanoscale.

3.
J Mol Graph Model ; 106: 107915, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862576

RESUMO

Biomaterials play a crucial role in tissue engineering as a functional replacement, regenerative medicines, supportive scaffold for guided tissue growth, and drug delivery devices. The term biomaterial refers to metals, ceramics, and polymers account for the vast majority. In the case of polymers, hydrogels have emerged as active materials for an immense variety of applications. Epoxy-based hydrogels possess a unique network structure that enables very high levels of hydrophilicity and biocompatibility. Hydrogel such as Medipacs Epoxy Polymers (MEPs) models were constructed to understand water's behavior at the water/hydrogel interface and hydrogel network. We computed the Gibbs dividing surface (GDS) to define the MEP/water interface, and all the physicochemical properties were computed based on GDS. We calculated the radial distribution function (RDF), the 2D surface roughness of the immersed MEPs. RDF analysis confirmed that the first hydration shell is at a distance of 1.86 Å, and most of the water molecules are near the hydroxyl group of the MEPs network. Hydrogen bonds (H-bonds) analysis was performed, and the observation suggested that the disruption of the H-bonds between MEP chains leads to an increase in the polymer matrix's void spaces. These void spaces are filled with diffused water molecules, leading to swelling of the MEP hydrogel. The swelling parameter was estimated from the fitted curve of the yz-lattice of the simulation cell. The MEP/water interface simulation results provide insightful information regarding the design strategy of epoxy-based hydrogel and other hydrogels vital for biomedical applications.


Assuntos
Hidrogéis , Simulação de Dinâmica Molecular , Materiais Biocompatíveis , Engenharia Tecidual , Água
4.
Nanotechnology ; 20(26): 264020, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19509443

RESUMO

In this work we investigate some of the key factors in simultaneously recorded scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM) images of the TiO(2)(110) surface, particularly the role of tip size and orientation in the obtained contrast pattern, and the importance of tip-surface relaxations and surface impurities in measured currents. We show that, while using multi-channel scanning modes provides an increase in physical data from a given measurement and greatly aids in interpretation, it also demands much greater rigor in simulations to provide a complete comparison.

5.
J Phys Condens Matter ; 27(4): 045001, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25524935

RESUMO

In this article, we study the origin of the corrugating and anticorrugating states through the electronic properties of the Si(1 0 0) surface via a low-temperature (9 K) scanning tunneling microscope (STM). Our study is based on the analysis of the STM topographies corrugation variations when related to the shift of the local density of states (LDOS) maximum in the [Formula: see text] direction. Our experimental results are correlated with numerical simulations using the density-functional theory with hybrid Heyd-Scuseria-Ernzerhof (HSE06) functional to simulate the STM topographies, the projected density of states variations at different depths in the silicon surface as well as the three dimensional partial charge density distributions in real-space. This work reveals that the Si(1 0 0) surface exhibits two anticorrugating states at +0.8 and +2.8 V that are associated with a phase shift of the LDOS maximum in the unoccupied states STM topographies. By comparing the calculated data with our experimental results, we have been able to identify the link between the variations of the STM topographies corrugation and the shift of the LDOS maximum observed experimentally. Each surface voltage at which the STM topographies corrugation drops is defined as anticorrugating states. In addition, we have evidenced a sharp jump in the tunnel current when the second LDOS maximum shift is probed, whose origin is discussed and associated with the presence of Van Hove singularities.

6.
Phys Rev Lett ; 102(13): 136103, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19392373

RESUMO

From an interplay between simultaneously recorded noncontact atomic force microscopy and scanning tunneling microscopy images and simulations based on density functional theory, we reveal the location of single hydrogen species in the surface and subsurface layers of rutile TiO2. Subsurface hydrogen atoms (H(sub)) are found to reside in a stable interstitial site as subsurface OH groups detectable in scanning tunneling microscopy as a characteristic electronic state but imperceptible to atomic force microscopy. The combined atomic force microscopy, scanning tunneling microscopy, and density functional theory study demonstrates a general scheme to reveal near surface defects and interstitials in poorly conducting materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa