Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 218, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199089

RESUMO

BACKGROUND: Perineuronal nets (PNNs) are specialized extracellular matrix structures mainly found around fast-spiking parvalbumin (FS-PV) interneurons. In the adult, their degradation alters FS-PV-driven functions, such as brain plasticity and memory, and altered PNN structures have been found in neurodevelopmental and central nervous system disorders such as Alzheimer's disease, leading to interest in identifying targets able to modify or participate in PNN metabolism. The serine protease tissue-type plasminogen activator (tPA) plays multifaceted roles in brain pathophysiology. However, its cellular expression profile in the brain remains unclear and a possible role in matrix plasticity through PNN remodeling has never been investigated. RESULT: By combining a GFP reporter approach, immunohistology, electrophysiology, and single-cell RT-PCR, we discovered that cortical FS-PV interneurons are a source of tPA in vivo. We found that mice specifically lacking tPA in FS-PV interneurons display denser PNNs in the somatosensory cortex, suggesting a role for tPA from FS-PV interneurons in PNN remodeling. In vitro analyses in primary cultures of mouse interneurons also showed that tPA converts plasminogen into active plasmin, which in turn, directly degrades aggrecan, a major structural chondroitin sulfate proteoglycan (CSPG) in PNNs. CONCLUSIONS: We demonstrate that tPA released from FS-PV interneurons in the central nervous system reduces PNN density through CSPG degradation. The discovery of this tPA-dependent PNN remodeling opens interesting insights into the control of brain plasticity.


Assuntos
Parvalbuminas , Ativador de Plasminogênio Tecidual , Agrecanas/metabolismo , Animais , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Fibrinolisina/metabolismo , Interneurônios/fisiologia , Camundongos , Parvalbuminas/metabolismo , Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo
2.
J Neurosci ; 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045309

RESUMO

Perineuronal net (PNN) accumulation around parvalbumin-expressing (PV) inhibitory interneurons marks the closure of critical periods of high plasticity, whereas PNN removal reinstates juvenile plasticity in the adult cortex. Using targeted chemogenetic in vivo approaches in the adult mouse visual cortex, we found that transient inhibition of PV interneurons, through metabotropic or ionotropic chemogenetic tools, induced PNN regression. Electroencephalographic recordings indicated that inhibition of PV interneurons did not elicit unbalanced network excitation. Likewise, inhibition of local excitatory neurons also induced PNN regression, whereas chemogenetic excitation of either PV or excitatory neurons did not reduce the PNN. We also observed that chemogenetically inhibited PV interneurons exhibited reduced PNN compared to their untransduced neighbors, and confirmed that single PV interneurons express multiple genes enabling individual regulation of their own PNN density. Our results indicate that PNN density is regulated in the adult cortex by local changes of network activity that can be triggered by modulation of PV interneurons. PNN regulation may provide adult cortical circuits with an activity-dependent mechanism to control their local remodeling.SIGNIFICANCE STATEMENTThe perineuronal net is an extracellular matrix, which accumulates around individual parvalbumin-expressing inhibitory neurons during postnatal development, and is seen as a barrier that prevents plasticity of neuronal circuits in the adult cerebral cortex. We found that transiently inhibiting parvalbumin-expressing or excitatory cortical neurons triggers a local decrease of perineuronal net density. Our results indicate that perineuronal nets are regulated in the adult cortex depending on the activity of local microcircuits. These findings uncover an activity-dependent mechanism by which adult cortical circuits may locally control their plasticity.

3.
Cereb Cortex ; 29(3): 1090-1108, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462275

RESUMO

We have proposed that cortical nNOS/NK1R interneurons have a role in sleep homeostasis. The hypocretins (orexins) are wake-promoting neuropeptides and hypocretin/orexin (Hcrt) neurons project to the cortex. Hcrt peptides affect deep layer cortical neurons, and Hcrt receptor 1 (Hcrtr1; Ox1r) mRNA is expressed in cortical nNOS/NK1R cells. Therefore, we investigated whether Hcrt neuron stimulation affects cingulate cortex nNOS/NK1R neurons. Bath application of HCRT1/orexin-A evoked an inward current and membrane depolarization in most nNOS/NK1R cells which persisted in tetrodotoxin; optogenetic stimulation of Hcrt terminals expressing channelrhodopsin-2 confirmed these results, and pharmacological studies determined that HCRTR1 mediated these responses. Single-cell RT-PCR found Hcrtr1 mRNA in 31% of nNOS/NK1R cells without any Hcrtr2 mRNA expression; immunohistochemical studies of Hcrtr1-EGFP mice confirmed that a minority of nNOS/NK1R cells express HCRTR1. When Hcrt neurons degenerated in orexin-tTA;TetO DTA mice, the increased EEG delta power during NREM sleep produced in response to 4 h sleep deprivation and c-FOS expression in cortical nNOS/NK1R cells during recovery sleep were indistinguishable from that of controls. We conclude that Hcrt excitatory input to these deep layer cells is mediated through HCRTR1 but is unlikely to be involved in the putative role of cortical nNOS/NK1R neurons in sleep homeostasis.


Assuntos
Giro do Cíngulo/fisiologia , Homeostase , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo I/fisiologia , Receptores de Orexina/fisiologia , Receptores da Neurocinina-1/fisiologia , Sono/fisiologia , Animais , Feminino , Giro do Cíngulo/efeitos dos fármacos , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Orexinas/administração & dosagem , Orexinas/fisiologia
4.
Cereb Cortex ; 28(6): 1959-1979, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472227

RESUMO

Cholinergic (ACh) basal forebrain (BF) neurons are active during wakefulness and rapid eye movement (REM) sleep and are involved in sleep homeostasis. We have previously shown in adult animals that cortical neurons that express neuronal nitric oxide synthase (nNOS) and the receptor for Substance P (NK1R) are activated during non-REM (NREM) sleep in proportion to homeostatic sleep drive. Here, we show that BF neurons modulate cortical nNOS/NK1R cells. In vitro optogenetic stimulation of BF terminals both activated and inhibited nNOS/NK1R neurons. Pharmacological studies revealed cholinergic responses mediated by postsynaptic activation of muscarinic receptors (mAChRs; M3R > M2/4R > M1R) and that presynaptic M3R and M2R activation reduced glutamatergic input onto nNOS/NK1R neurons whereas nicotinic receptor (nAChR)-mediated responses of nNOS/NK1R neurons were mixed. Cholinergic responses of nNOS/NK1R neurons were largely unaffected by prolonged wakefulness. ACh release, including from BF cells, appears to largely excite cortical nNOS/NK1R cells while reducing glutamatergic inputs onto these neurons. We propose that cholinergic signaling onto cortical nNOS/NK1R neurons may contribute to the regulation of cortical activity across arousal states, but that this response is likely independent of the role of these neurons in sleep homeostasis.


Assuntos
Nível de Alerta/fisiologia , Prosencéfalo Basal/fisiologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Animais , Prosencéfalo Basal/citologia , Córtex Cerebral/metabolismo , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/fisiologia , Camundongos , Vias Neurais/citologia , Neurônios/citologia , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores da Neurocinina-1/metabolismo
5.
Elife ; 102021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34766906

RESUMO

Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (KATP) channels formed with KCNJ11 and ABCC8 subunits, which we show are functionally expressed in most neocortical neuronal types. We also demonstrate the ability of cortical neurons to take-up and metabolize lactate. We further reveal that ATP is produced by cortical neurons largely via oxidative phosphorylation and only modestly by glycolysis. Our data demonstrate that in active neurons, lactate is preferred to glucose as an energy substrate, and that lactate metabolism shapes neuronal activity in the neocortex through KATP channels. Our results highlight the importance of metabolic crosstalk between neurons and astrocytes for brain function.


Assuntos
Ácido Láctico/metabolismo , Neurônios/metabolismo , Trifosfato de Adenosina , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Glicólise , Canais KATP , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Fosforilação Oxidativa , Ratos Wistar
6.
Cell Metab ; 31(3): 503-517.e8, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130882

RESUMO

Alteration of brain aerobic glycolysis is often observed early in the course of Alzheimer's disease (AD). Whether and how such metabolic dysregulation contributes to both synaptic plasticity and behavioral deficits in AD is not known. Here, we show that the astrocytic l-serine biosynthesis pathway, which branches from glycolysis, is impaired in young AD mice and in AD patients. l-serine is the precursor of d-serine, a co-agonist of synaptic NMDA receptors (NMDARs) required for synaptic plasticity. Accordingly, AD mice display a lower occupancy of the NMDAR co-agonist site as well as synaptic and behavioral deficits. Similar deficits are observed following inactivation of the l-serine synthetic pathway in hippocampal astrocytes, supporting the key role of astrocytic l-serine. Supplementation with l-serine in the diet prevents both synaptic and behavioral deficits in AD mice. Our findings reveal that astrocytic glycolysis controls cognitive functions and suggest oral l-serine as a ready-to-use therapy for AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Disfunção Cognitiva/metabolismo , Glicólise , Serina/biossíntese , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Animais , Astrócitos/efeitos dos fármacos , Sítios de Ligação , Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Plasticidade Neuronal/efeitos dos fármacos , Fosfoglicerato Desidrogenase/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/administração & dosagem , Serina/farmacologia , Serina/uso terapêutico , Memória Espacial/efeitos dos fármacos
7.
J Vis Exp ; (136)2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29985318

RESUMO

The cerebral cortex is composed of numerous cell types exhibiting various morphological, physiological, and molecular features. This diversity hampers easy identification and characterization of these cell types, prerequisites to study their specific functions. This article describes the multiplex single cell reverse transcription polymerase chain reaction (RT-PCR) protocol, which allows, after patch-clamp recording in slices, to detect simultaneously the expression of tens of genes in a single cell. This simple method can be implemented with morphological characterization and is widely applicable to determine the phenotypic traits of various cell types and their particular cellular environment, such as in the vicinity of blood vessels. The principle of this protocol is to record a cell with the patch-clamp technique, to harvest and reverse transcribe its cytoplasmic content, and to detect qualitatively the expression of a predefined set of genes by multiplex PCR. It requires a careful design of PCR primers and intracellular patch-clamp solution compatible with RT-PCR. To ensure a selective and reliable transcript detection, this technique also requires appropriate controls from cytoplasm harvesting to amplification steps. Although precautions discussed here must be strictly followed, virtually any electrophysiological laboratory can use the multiplex single cell RT-PCR technique.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Técnicas de Patch-Clamp/métodos , Transcrição Reversa/genética , Transcriptoma
8.
Front Cell Neurosci ; 12: 216, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072874

RESUMO

The impairment of cerebral glucose utilization is an early and predictive biomarker of Alzheimer's disease (AD) that is likely to contribute to memory and cognition disorders during the progression of the pathology. Yet, the cellular and molecular mechanisms underlying these metabolic alterations remain poorly understood. Here we studied the glucose metabolism of supragranular pyramidal cells at an early presymptomatic developmental stage in non-transgenic (non-Tg) and 3xTg-AD mice, a mouse model of AD replicating numerous hallmarks of the disease. We performed both intracellular glucose imaging with a genetically encoded fluorescence resonance energy transfer (FRET)-based glucose biosensor and transcriptomic profiling of key molecular elements of glucose metabolism with single-cell multiplex RT-PCR (scRT-mPCR). We found that juvenile pyramidal cells exhibit active glycolysis and pentose phosphate pathway at rest that are respectively enhanced and impaired in 3xTg-AD mice without alteration of neuronal glucose uptake or transcriptional modification. Given the importance of glucose metabolism for neuronal survival, these early alterations could initiate or at least contribute to the later neuronal dysfunction of pyramidal cells in AD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa