Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430952

RESUMO

Histological structure of thrombi is a strong determinant of the outcome of vascular recanalization therapy, the only treatment option for acute ischemic stroke (AIS) patients. A total of 21 AIS patients from this study after undergoing non-enhanced CT scan and multimodal MRI were treated with mechanical stent-based and manual aspiration thrombectomy, and thromboembolic retrieved from a cerebral artery. Complementary histopathological and imaging analyses were performed to understand their composition with a specific focus on fibrin, von Willebrand factor, and neutrophil extracellular traps (NETs). Though distinct RBC-rich and platelet-rich areas were found, AIS patient thrombi were overwhelmingly platelet-rich, with 90% of thrombi containing <40% total RBC-rich contents (1.5 to 37%). Structurally, RBC-rich areas were simple, consisting of tightly packed RBCs in thin fibrin meshwork with sparsely populated nucleated cells and lacked any substantial von Willebrand factor (VWF). Platelet-rich areas were structurally more complex with thick fibrin meshwork associated with VWF. Plenty of leukocytes populated the platelet-rich areas, particularly in the periphery and border areas between platelet-rich and RBC-rich areas. Platelet-rich areas showed abundant activated neutrophils (myeloperoxidase+ and neutrophil-elastase+) containing citrullinated histone-decorated DNA. Citrullinated histone-decorated DNA also accumulated extracellularly, pointing to NETosis by the activated neutrophils. Notably, NETs-containing areas showed strong reactivity to VWF, platelets, and high-mobility group box 1 (HMGB1), signifying a close interplay between these components.


Assuntos
Armadilhas Extracelulares , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Humanos , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Fator de von Willebrand/metabolismo , Histonas , Acidente Vascular Cerebral/patologia , Trombose/patologia , Fibrina/metabolismo , DNA
2.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613546

RESUMO

Transient ischemic attack (TIA) refers to a momentary neurologic deficit caused by focal cerebral, spinal or retinal ischemic insult. TIA is associated with a high risk of impending acute ischemic stroke (AIS), a neurologic dysfunction characterized by focal cerebral, spinal or retinal infarction. Understanding the differences in molecular pathways in AIS and TIA has merit for deciphering the underlying cause for neuronal deficits with long-term effects and high risks of morbidity and mortality. In this study, we performed comprehensive investigations into the circulating microRNA (miRNA) profiles of AIS (n = 191) and TIA (n = 61) patients. We performed RNA-Seq on serum samples collected within 24 hrs of clinical diagnosis and randomly divided the study populations into discovery and validation cohorts. We identified a panel of 11 differentially regulated miRNAs at FDR < 0.05. Hsa-miR-548c-5p, -20a-5p, -18a-5p, -484, -652-3p, -486-3p, -24-3p, -181a-5p and -222-3p were upregulated, while hsa-miR-500a-3p and -206 were downregulated in AIS patients compared to TIA patients. We also probed the previously validated gene targets of our identified miRNA panel to highlight the molecular pathways affected in AIS. Moreover, we developed a multivariate classifier with potential utilization as a discriminative biomarker for AIS and TIA patients. The underlying molecular pathways in AIS compared to TIA may be explored further in functional studies for therapeutic targeting in clinical translation.


Assuntos
MicroRNA Circulante , Ataque Isquêmico Transitório , AVC Isquêmico , MicroRNAs , Acidente Vascular Cerebral , Humanos , Biomarcadores , MicroRNA Circulante/genética , Ataque Isquêmico Transitório/genética , AVC Isquêmico/genética , MicroRNAs/metabolismo , Acidente Vascular Cerebral/terapia
3.
Neurobiol Dis ; 117: 189-202, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29894752

RESUMO

Mutations in the gene encoding Tau (MAPT-microtubule-associated protein tau) cause a group of neurodegenerative diseases called tauopathies. A recently identified Tau variant, p.A152T, has been reported as a risk factor for frontotemporal dementia-related disorders and Alzheimer disease. However, the mechanism for the pathologies still remain poorly understood. Transgenic Caenorhabditis elegans expressing mutant 2N4R-TauA152T (TauAT) panneuronally show locomotor defects, neurodegeneration and accelerated aging. Here we report that, in TauAT animals, the glutamatergic nervous system is at a high risk of progressive neuronal loss. We present genetic data that this loss occurs predominantly through necrosis. The neuronal loss is caused by several determinants, such as altered adenylyl cyclase (type AC9) pathway, prevalence of excitotoxicity-like conditions, aging-related factors and finally dyshomeostasis of intracellular calcium (Ca2+). The study provides novel insights into the mechanisms involved in selective loss of glutamatergic neurons in a TauAT tauopathy model which could point to new therapeutic targets.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Sinalização do Cálcio/fisiologia , Ácido Glutâmico/metabolismo , Degeneração Neural/metabolismo , Tauopatias/metabolismo , Proteínas tau/biossíntese , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Ácido Glutâmico/genética , Degeneração Neural/genética , Degeneração Neural/patologia , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
4.
FASEB J ; 31(12): 5137-5148, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29191965

RESUMO

One of the hallmarks of the tauopathies, which include the neurodegenerative disorders, such as Alzheimer disease (AD), corticobasal degeneration, frontotemporal dementia, and progressive supranuclear palsy (PSP), is the abnormal accumulation of post-translationally modified, insoluble tau. The result is a loss of neurons, decreased mental function, and complete dependence of patients on others. Aggregation of tau, which under physiologic conditions is a highly soluble protein, is thought to be central to the pathogenesis of these diseases. Indeed one of the strongest lines of evidence is the MAPT gene polymorphisms that lead to the familial forms of tauopathy. Extensive research in animal models over the years has contributed some of the most important findings regarding the pathogenesis of these diseases. Despite this, the precise molecular mechanisms that lead to abnormal tau folding, accumulation, and spreading remain unknown. Owing to the fact that most of the biochemical pathways are conserved, Caenorhabditis elegans provides an alternative approach to identify cellular mechanisms and druggable genes that operate in such disorders. Many human genes implicated in neurodegenerative diseases have counterparts in C. elegans, making it an excellent model in which to study their pathogenesis. In this article, we review some of the important findings gained from C. elegans tauopathy models.-Pir, G. J., Choudhary, B., Mandelkow, E. Caenorhabditiselegans models of tauopathy.


Assuntos
Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/patogenicidade , Tauopatias/metabolismo , Tauopatias/patologia , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Tauopatias/genética , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Hum Mol Genet ; 21(16): 3587-603, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22611162

RESUMO

Increased Tau protein amyloidogenicity has been causatively implicated in several neurodegenerative diseases, collectively called tauopathies. In pathological conditions, Tau becomes hyperphosphorylated and forms intracellular aggregates. The deletion of K280, which is a mutation that commonly appears in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17, enhances Tau aggregation propensity (pro-aggregation). In contrast, introduction of the I277P and I308P mutations prevents ß-sheet formation and subsequent aggregation (anti-aggregation). In this study, we created a tauopathy model by expressing pro- or anti-aggregant Tau species in the nervous system of Caenorhabditis elegans. Animals expressing the highly amyloidogenic Tau species showed accelerated Tau aggregation and pathology manifested by severely impaired motility and evident neuronal dysfunction. In addition, we observed that the axonal transport of mitochondria was perturbed in these animals. Control animals expressing the anti-aggregant combination had rather mild phenotype. We subsequently tested several Tau aggregation inhibitor compounds and observed a mitigation of Tau proteotoxicity. In particular, a novel compound that crosses the blood-brain barrier of mammals proved effective in ameliorating the motility as well as delaying the accumulation of neuronal defects. Our study establishes a new C. elegans model of Tau aggregation-mediated toxicity and supports the emerging notion that inhibiting the nucleation of Tau aggregation can be neuroprotective.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios/patologia , Tauopatias/etiologia , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Axonal , Barreira Hematoencefálica/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Humanos , Hidrazinas/farmacologia , Azul de Metileno/farmacologia , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fenótipo , Fosforilação , Estrutura Terciária de Proteína , Células Receptoras Sensoriais/metabolismo , Tauopatias/patologia , Tiazóis/farmacologia , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteínas tau/antagonistas & inibidores , Proteínas tau/genética
6.
Front Mol Biosci ; 11: 1387859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948080

RESUMO

Acute ischemic stroke is the most common cause of neurologic dysfunction caused by focal brain ischemia and tissue injury. Diabetes is a major risk factor of stroke, exacerbating disease management and prognosis. Therefore, discovering new diagnostic markers and therapeutic targets is critical for stroke prevention and treatment. Extracellular vesicles (EVs), with their distinctive properties, have emerged as promising candidates for biomarker discovery and therapeutic application. This case-control study utilized mass spectrometry-based proteomics to compare EVs from non-diabetic stroke (nDS = 14), diabetic stroke (DS = 13), and healthy control (HC = 12) subjects. Among 1288 identified proteins, 387 were statistically compared. Statistical comparisons using a general linear model (log2 foldchange ≥0.58 and FDR-p≤0.05) were performed for nDS vs HC, DS vs HC, and DS vs nDS. DS vs HC and DS vs nDS comparisons produced 123 and 149 differentially expressed proteins, respectively. Fibrinogen gamma chain (FIBG), Fibrinogen beta chain (FIBB), Tetratricopeptide repeat protein 16 (TTC16), Proline rich 14-like (PR14L), Inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKE), Biorientation of chromosomes in cell division protein 1-like 1 (BD1L1), and protein PR14L exhibited significant differences in the DS group. The pathway analysis revealed that the complement system pathways were activated, and blood coagulation and neuroprotection were inhibited in the DS group (z-score ≥2; p ≤ 0.05). These findings underscore the potential of EVs proteomics in identifying biomarkers for stroke management and prevention, warranting further clinical investigation.

7.
Sci Rep ; 12(1): 20788, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456640

RESUMO

Repulsive guidance molecule-a (RGMa) inhibits angiogenesis and increases inflammation. Animal models of cerebral ischemia have shown that an increased expression of RGMa leads to larger infarction and its inhibition attenuates effects of ischemia. We report on the relationship of RGMa to stroke types and severity. This is a prospective study in patients admitted to the stroke service in Qatar. We collected the clinical determinants, including NIHSS at admission, imaging and outcome at discharge and 90-days. RGMa levels were determined by measuring mRNA levels extracted from peripheral blood mononuclear cells (PBMCs) within 24 h of onset and at 5 days. There were 90 patients (lacunar: 64, cortical: 26) and 35 age-matched controls. RGMa mRNA levels were significantly higher in the stroke patients: day 1: 1.007 ± 0.13 versus 2.152 ± 0.19 [p < 0.001] and day-5: 3.939 ± 0.36 [p < 0.0001]) and significantly higher in patients with severe stroke (NIHSS ≥ 8) compared to milder symptoms (NIHSS < 8) at day 1 (NIHSS ≥ 8: 2.563 ± 0.36; NIHSS < 8: 1.947 ± 0.2) and day 5 (NIHSS ≥ 8: 5.25 ± 0.62; NIHSS < 8: 3.259 ± 0.419). Cortical stroke patients had marginally higher RGMa mRNA levels compared to lacunar stroke at day 1 (cortical stroke: 2.621 ± 0.46 vs lacunar stroke: 1.961 ± 0.19) and day 5 (cortical stroke: 4.295 ± 0.76 vs lacunar stroke: 3.774 ± 0.39). In conclusion, there is an increase in the level of RGMa mRNA in patients with acute stroke and seen in patients with lacunar and cortical stroke. The increase in RGMa mRNA levels is related to the severity of the stroke and increases over the initial 5 days. Further studies are required to determine the effects of the increase in RGMa on stroke recovery.


Assuntos
Gastrópodes , Acidente Vascular Cerebral Lacunar , Acidente Vascular Cerebral , Animais , Humanos , Leucócitos Mononucleares , Estudos Prospectivos , Acidente Vascular Cerebral/genética , Infarto Cerebral
8.
Front Cardiovasc Med ; 9: 1024790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277770

RESUMO

Stroke is the second leading cause of global mortality and continued efforts aim to identify predictive, diagnostic, or prognostic biomarkers to reduce the disease burden. Circulating microRNAs (miRNAs) have emerged as potential biomarkers in stroke. We performed comprehensive circulating miRNA profiling of ischemic stroke patients with or without type 2 diabetes mellitus (T2DM), an important risk factor associated with worse clinical outcomes in stroke. Serum samples were collected within 24 h of acute stroke diagnosis and circulating miRNAs profiled using RNA-Seq were compared between stroke patients with T2DM (SWDM; n = 92) and those without T2DM (SWoDM; n = 98). Our analysis workflow involved random allocation of study cohorts into discovery (n = 96) and validation (n = 94) datasets. Five miRNAs were found to be differentially regulated in SWDM compared to SWoDM patients. Hsa-miR-361-3p and -664a-5p were downregulated, whereas miR-423-3p, -140-5p, and -17-3p were upregulated. We also explored the gene targets of these miRNAs and investigated the downstream pathways associated with them to decipher the potential pathways impacted in stroke with diabetes as comorbidity. Overall, our novel findings provide important insights into the differentially regulated miRNAs, their associated pathways and potential utilization for clinical benefits in ischemic stroke patients with diabetes.

9.
Mol Neurobiol ; 56(5): 3751-3767, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30196394

RESUMO

Tau aggregation is a hallmark of a group of neurodegenerative diseases termed Tauopathies. Reduction of aggregation-prone Tau has emerged as a promising therapeutic approach. Here, we show that an anti-aggregant Tau fragment (F3ΔKPP, residues 258-360) harboring the ΔK280 mutation and two proline substitutions (I277P & I308P) in the repeat domain can inhibit aggregation of Tau constructs in vitro, in cultured cells and in vivo in a Caenorhabditis elegans model of Tau aggregation. The Tau fragment reduced Tau-dependent cytotoxicity in a N2a cell model, suppressed the Tau-mediated neuronal dysfunction and ameliorated the defective locomotion in C. elegans. In vitro the fragment competes with full-length Tau for polyanionic aggregation inducers and thus inhibits Tau aggregation. Our combined in vitro and in vivo results suggest that the anti-aggregant Tau fragment may potentially be used to address the consequences of Tau aggregation in Tauopathies.


Assuntos
Fragmentos de Peptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Proteínas tau/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Estrutura Secundária de Proteína , Proteínas tau/química
10.
Mol Neurodegener ; 11: 33, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27118310

RESUMO

BACKGROUND: A certain number of mutations in the Microtubule-Associated Protein Tau (MAPT) gene have been identified in individuals with high risk to develop neurodegenerative diseases, collectively called tauopathies. The mutation A152TMAPT was recently identified in patients diagnosed with frontotemporal spectrum disorders, including Progressive Supranuclear Palsy (PSP), Frontotemporal Dementia (FTD), Corticobasal Degeneration (CBD), and Alzheimer disease (AD). The A152TMAPT mutation is unusual since it lies within the N-terminal region of Tau protein, far outside the repeat domain that is responsible for physiological Tau-microtubule interactions and pathological Tau aggregation. How A152TMAPT causes neurodegeneration remains elusive. RESULTS: To understand the pathological consequences of this mutation, here we present a new Caenorhabditis elegans model expressing the mutant A152TMAPT in neurons. While expression of full-length wild-type human tau (Tau(wt), 2N4R) in C. elegans neurons induces a progressive mild uncoordinated locomotion in a dose-dependent manner, mutant tau (Tau(A152T), 2N4R) induces a severe paralysis accompanied by acute neuronal dysfunction. Mutant Tau(A152T) worms display morphological changes in neurons reminiscent of neuronal aging and a shortened life-span. Moreover, mutant A152T overexpressing neurons show mislocalization of pre-synaptic proteins as well as distorted mitochondrial distribution and trafficking. Strikingly, mutant tau-transgenic worms do not accumulate insoluble tau aggregates, although soluble oligomeric tau was detected. In addition, the full-length A152T-tau remains in a pathological conformation that accounts for its toxicity. Moreover, the N-terminal region of tau is not toxic per se, despite the fact that it harbours the A152T mutation, but requires the C-terminal region including the repeat domain to move into the neuronal processes in order to execute the pathology. CONCLUSION: In summary, we show that the mutant Tau(A152T) induces neuronal dysfunction, morphological alterations in neurons akin to aging phenotype and reduced life-span independently of aggregation. This comprehensive description of the pathology due to Tau(A152T) opens up multiple possibilities to identify cellular targets involved in the Tau-dependent pathology for a potential therapeutic intervention.


Assuntos
Mutação/genética , Neurônios/metabolismo , Proteínas tau/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Humanos , Fenótipo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa