Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 73(4): 33-97, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34663684

RESUMO

Parkinson disease (PD) used to be considered a nongenetic condition. However, the identification of several autosomal dominant and recessive mutations linked to monogenic PD has changed this view. Clinically manifest PD is then thought to occur through a complex interplay between genetic mutations, many of which have incomplete penetrance, and environmental factors, both neuroprotective and increasing susceptibility, which variably interact to reach a threshold over which PD becomes clinically manifested. Functional studies of PD gene products have identified many cellular and molecular pathways, providing crucial insights into the nature and causes of PD. PD originates from multiple causes and a range of pathogenic processes at play, ultimately culminating in nigral dopaminergic loss and motor dysfunction. An in-depth understanding of these complex and possibly convergent pathways will pave the way for therapeutic approaches to alleviate the disease symptoms and neuroprotective strategies to prevent disease manifestations. This review is aimed at providing a comprehensive understanding of advances made in PD research based on leveraging genetic insights into the pathogenesis of PD. It further discusses novel perspectives to facilitate identification of critical molecular pathways that are central to neurodegeneration that hold the potential to develop neuroprotective and/or neurorestorative therapeutic strategies for PD. SIGNIFICANCE STATEMENT: A comprehensive review of PD pathophysiology is provided on the complex interplay of genetic and environmental factors and biologic processes that contribute to PD pathogenesis. This knowledge identifies new targets that could be leveraged into disease-modifying therapies to prevent or slow neurodegeneration in PD.


Assuntos
Doença de Parkinson , Humanos , Mutação , Neuroproteção , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética
2.
J Neurosci ; 33(17): 7535-47, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616558

RESUMO

Axonal transport defects and axonopathy are prominent in early preclinical stages of Alzheimer's disease (AD), often preceding known disease-related pathology by over a year. As epigenetic transcriptional regulatory mechanisms, such as histone acetylation, are critical for neurogenesis, it is postulated that their misregulation might be linked to early pathophysiological mechanisms that contribute to AD. The histone acetyltransferase (HAT) Tip60 epigenetically regulates genes enriched for neuronal functions and is implicated in AD via its formation of a transcriptional regulatory complex with the amyloid precursor protein (APP) intracellular domain. Disruption of APP function is associated with axonal transport defects, raising the possibility that an epigenetic role for Tip60 might also be involved. Here, we examine whether Tip60 HAT activity functions in axonal transport using Drosophila CNS motor neurons as a well-characterized transport model. We show that reduction of Tip60 HAT activity in the nervous system causes axonopathy and transport defects associated with epigenetic misregulation of certain axonal transport-linked Tip60 target genes. Functional consequences of these defects are evidenced by reduced locomotion activity of the mutant Tip60 larvae, and these phenotypes can be partially rescued with certain histone deacetylase inhibitors. Finally, we demonstrate that Tip60 function in axonal transport is mediated by APP and that, remarkably, excess Tip60 exerts a neuroprotective role in APP-induced axonal transport and functional locomotion defects. Our observations highlight a novel functional interactive role between Tip60 HAT activity and APP in axonal transport and provide insight into the importance of specific HAT modulators for cognitive disorder treatment.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Transporte Axonal/genética , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Histona Acetiltransferases/genética , Fenótipo , Doença de Alzheimer/prevenção & controle , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/fisiologia , Histona Acetiltransferases/biossíntese , Histona Acetiltransferases/fisiologia , Atividade Motora/genética , Regulação para Cima/genética
3.
Sci Adv ; 8(13): eabh1824, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363524

RESUMO

Mutations in PINK1 and parkin highlight the mitochondrial axis of Parkinson's disease (PD) pathogenesis. PINK1/parkin regulation of the transcriptional repressor PARIS bears direct relevance to dopamine neuron survival through augmentation of PGC-1α-dependent mitochondrial biogenesis. Notably, knockout of PARIS attenuates dopaminergic neurodegeneration in mouse models, indicating that interventions that prevent dopaminergic accumulation of PARIS could have therapeutic potential in PD. To this end, we have identified the deubiquitinase cylindromatosis (CYLD) to be a regulator of PARIS protein stability and proteasomal degradation via the PINK1/parkin pathway. Knockdown of CYLD in multiple models of PINK1 or parkin inactivation attenuates PARIS accumulation by modulating its ubiquitination levels and relieving its repressive effect on PGC-1α to promote mitochondrial biogenesis. Together, our studies identify CYLD as a negative regulator of dopamine neuron survival, and inhibition of CYLD may potentially be beneficial in PD by lowering PARIS levels and promoting mitochondrial biogenesis.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Animais , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Enzimas Desubiquitinantes/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ubiquitinação
4.
Sci Transl Med ; 13(604)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321320

RESUMO

Accumulation of the parkin-interacting substrate (PARIS; ZNF746), due to inactivation of parkin, contributes to Parkinson's disease (PD) through repression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α; PPARGC1A) activity. Here, we identify farnesol as an inhibitor of PARIS. Farnesol promoted the farnesylation of PARIS, preventing its repression of PGC-1α via decreasing PARIS occupancy on the PPARGC1A promoter. Farnesol prevented dopaminergic neuronal loss and behavioral deficits via farnesylation of PARIS in PARIS transgenic mice, ventral midbrain transduction of AAV-PARIS, adult conditional parkin KO mice, and the α-synuclein preformed fibril model of sporadic PD. PARIS farnesylation is decreased in the substantia nigra of patients with PD, suggesting that reduced farnesylation of PARIS may play a role in PD. Thus, farnesol may be beneficial in the treatment of PD by enhancing the farnesylation of PARIS and restoring PGC-1α activity.


Assuntos
Doença de Parkinson , Animais , Dopamina , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Prenilação , Proteínas Repressoras/metabolismo , Substância Negra/metabolismo
5.
Mol Neurodegener ; 15(1): 17, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138754

RESUMO

BACKGROUND: Mutations in PINK1 and parkin cause autosomal recessive Parkinson's disease (PD). Evidence placing PINK1 and parkin in common pathways regulating multiple aspects of mitochondrial quality control is burgeoning. However, compelling evidence to causatively link specific PINK1/parkin dependent mitochondrial pathways to dopamine neuron degeneration in PD is lacking. Although PINK1 and parkin are known to regulate mitophagy, emerging data suggest that defects in mitophagy are unlikely to be of pathological relevance. Mitochondrial functions of PINK1 and parkin are also tied to their proteasomal regulation of specific substrates. In this study, we examined how PINK1/parkin mediated regulation of the pathogenic substrate PARIS impacts dopaminergic mitochondrial network homeostasis and neuronal survival in Drosophila. METHODS: The UAS-Gal4 system was employed for cell-type specific expression of the various transgenes. Effects on dopamine neuronal survival and function were assessed by anti-TH immunostaining and negative geotaxis assays. Mitochondrial effects were probed by quantitative analysis of mito-GFP labeled dopaminergic mitochondria, assessment of mitochondrial abundance in dopamine neurons isolated by Fluorescence Activated Cell Sorting (FACS) and qRT-PCR analysis of dopaminergic factors that promote mitochondrial biogenesis. Statistical analyses employed two-tailed Student's T-test, one-way or two-way ANOVA as required and data considered significant when P < 0.05. RESULTS: We show that defects in mitochondrial biogenesis drive adult onset progressive loss of dopamine neurons and motor deficits in Drosophila models of PINK1 or parkin insufficiency. Such defects result from PARIS dependent repression of dopaminergic PGC-1α and its downstream transcription factors NRF1 and TFAM that cooperatively promote mitochondrial biogenesis. Dopaminergic accumulation of human or Drosophila PARIS recapitulates these neurodegenerative phenotypes that are effectively reversed by PINK1, parkin or PGC-1α overexpression in vivo. To our knowledge, PARIS is the only co-substrate of PINK1 and parkin to specifically accumulate in the DA neurons and cause neurodegeneration and locomotor defects stemming from disrupted dopamine signaling. CONCLUSIONS: Our findings identify a highly conserved role for PINK1 and parkin in regulating mitochondrial biogenesis and promoting mitochondrial health via the PARIS/ PGC-1α axis. The Drosophila models described here effectively recapitulate the cardinal PD phenotypes and thus will facilitate identification of novel regulators of mitochondrial biogenesis for physiologically relevant therapeutic interventions.


Assuntos
Neurônios Dopaminérgicos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Degeneração Neural/patologia , Proteínas Repressoras/metabolismo , Animais , Animais Geneticamente Modificados , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Degeneração Neural/metabolismo , Biogênese de Organelas , Doença de Parkinson , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
6.
Neuron ; 81(5): 961-963, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24607221

RESUMO

Motor neurons in ALS die via cell-autonomous and non-cell-autonomous mechanisms. Using adult human astrocytes and motor neurons, Re et al. (2014), in this issue of Neuron, discover that familial and sporadic ALS-derived human adult astrocytes secrete neurotoxic factors that selectively kill motor neurons through necroptosis, suggesting a new therapeutic avenue.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Astrócitos/citologia , Comunicação Celular/fisiologia , Morte Celular/fisiologia , Neurônios Motores/citologia , Animais , Humanos
7.
Front Cell Neurosci ; 7: 30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23543406

RESUMO

Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HAT) activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC) inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and HATs in neurodegenerative diseases and the future promising prospects of using specific HAT based therapeutic approaches.

8.
Fly (Austin) ; 7(2): 99-104, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23572111

RESUMO

Sleep disturbances are common in neurodegenerative diseases such as Alzheimer disease (AD). Unfortunately, how AD is mechanistically linked with interference of the body's natural sleep rhythms remains unclear. Our recent findings provide insight into this question by demonstrating that sleep disruption associated with AD is driven by epigenetic changes mediated by the histone acetyltransferase (HAT) Tip60. In this study, we show that Tip60 functionally interacts with the AD associated amyloid precursor protein (APP) to regulate axonal growth of Drosophila small ventrolateral neuronal (sLNv) pacemaker cells, and their production of neuropeptide pigment dispersing factor (PDF) that stabilizes appropriate sleep-wake patterns in the fly. Loss of Tip60 HAT activity under APP neurodegenerative conditions causes decreased PDF production, retraction of the sLNv synaptic arbor required for PDF release and disruption of sleep-wake cycles in these flies. Remarkably, excess Tip60 in conjunction with APP fully rescues these sleep-wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for Tip60 in these processes. Our studies highlight the importance of epigenetic based mechanisms underlying sleep disturbances in neurodegenerative diseases like AD.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/genética , Epigênese Genética , Histona Acetiltransferases/fisiologia , Sono/genética , Animais , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genótipo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
9.
Genetics ; 192(4): 1327-45, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22982579

RESUMO

Tip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates genes enriched for neuronal functions through interaction with the amyloid precursor protein (APP) intracellular domain. However, whether Tip60-mediated epigenetic dysregulation affects specific neuronal processes in vivo and contributes to neurodegeneration remains unclear. Here, we show that Tip60 HAT activity mediates axonal growth of the Drosophila pacemaker cells, termed "small ventrolateral neurons" (sLNvs), and their production of the neuropeptide pigment-dispersing factor (PDF) that functions to stabilize Drosophila sleep-wake cycles. Using genetic approaches, we show that loss of Tip60 HAT activity in the presence of the Alzheimer's disease-associated APP affects PDF expression and causes retraction of the sLNv synaptic arbor required for presynaptic release of PDF. Functional consequence of these effects is evidenced by disruption of the sleep-wake cycle in these flies. Notably, overexpression of Tip60 in conjunction with APP rescues these sleep-wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for dTip60 in sLNv growth and function under APP-induced neurodegenerative conditions. Our findings reveal a novel mechanism for Tip60 mediated sleep-wake regulation via control of axonal growth and PDF levels within the sLNv-encompassing neural network and provide insight into epigenetic-based regulation of sleep disturbances observed in neurodegenerative diseases like Alzheimer's disease.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Epigênese Genética , Histona Acetiltransferases/metabolismo , Neuropeptídeos/metabolismo , Sono/genética , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Axônios , Encéfalo/patologia , Drosophila/genética , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/genética , Humanos , Neurônios/metabolismo , Neuropeptídeos/genética , Transtornos do Sono-Vigília/genética
10.
PLoS One ; 7(7): e41776, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848598

RESUMO

Histone acetylation of chromatin promotes dynamic transcriptional responses in neurons that influence neuroplasticity critical for cognitive ability. It has been demonstrated that Tip60 histone acetyltransferase (HAT) activity is involved in the transcriptional regulation of genes enriched for neuronal function as well as the control of synaptic plasticity. Accordingly, Tip60 has been implicated in the neurodegenerative disorder Alzheimer's disease (AD) via transcriptional regulatory complex formation with the AD linked amyloid precursor protein (APP) intracellular domain (AICD). As such, inappropriate complex formation may contribute to AD-linked neurodegeneration by misregulation of target genes involved in neurogenesis; however, a direct and causative epigenetic based role for Tip60 HAT activity in this process during neuronal development in vivo remains unclear. Here, we demonstrate that nervous system specific loss of Tip60 HAT activity enhances APP mediated lethality and neuronal apoptotic cell death in the central nervous system (CNS) of a transgenic AD fly model while remarkably, overexpression of Tip60 diminishes these defects. Notably, all of these effects are dependent upon the C-terminus of APP that is required for transcriptional regulatory complex formation with Tip60. Importantly, we show that the expression of certain AD linked Tip60 gene targets critical for regulating apoptotic pathways are modified in the presence of APP. Our results are the first to demonstrate a functional interaction between Tip60 and APP in mediating nervous system development and apoptotic neuronal cell death in the CNS of an AD fly model in vivo, and support a novel neuroprotective role for Tip60 HAT activity in AD neurodegenerative pathology.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Apoptose , Encéfalo/patologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histona Acetiltransferases/metabolismo , Doença de Alzheimer/enzimologia , Animais , Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/enzimologia , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/patologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa