Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 13(9): e1002238, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26348462

RESUMO

Behavioral output of neural networks depends on a delicate balance between excitatory and inhibitory synaptic connections. However, it is not known whether network formation and stability is constrained by the sign of synaptic connections between neurons within the network. Here we show that switching the sign of a synapse within a neural circuit can reverse the behavioral output. The inhibitory tyramine-gated chloride channel, LGC-55, induces head relaxation and inhibits forward locomotion during the Caenorhabditis elegans escape response. We switched the ion selectivity of an inhibitory LGC-55 anion channel to an excitatory LGC-55 cation channel. The engineered cation channel is properly trafficked in the native neural circuit and results in behavioral responses that are opposite to those produced by activation of the LGC-55 anion channel. Our findings indicate that switches in ion selectivity of ligand-gated ion channels (LGICs) do not affect network connectivity or stability and may provide an evolutionary and a synthetic mechanism to change behavior.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Receptores de Amina Biogênica/metabolismo , Potenciais Sinápticos , Tiramina/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Engenharia Genética , Dados de Sequência Molecular , Receptores de Amina Biogênica/genética
2.
PLoS Biol ; 11(4): e1001529, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565061

RESUMO

Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Gαo pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.


Assuntos
Caenorhabditis elegans/fisiologia , Reação de Fuga/fisiologia , Neurotransmissores/fisiologia , Tiramina/fisiologia , Aldicarb/farmacologia , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/metabolismo , Inibidores da Colinesterase/farmacologia , Neurônios GABAérgicos/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Neurônios Motores/metabolismo , Contração Muscular , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Neurotransmissores/farmacologia , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Deleção de Sequência , Transmissão Sináptica , Tiramina/farmacologia
3.
J Neurosci ; 34(48): 15947-56, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25429136

RESUMO

Regulated calcium signals play conserved instructive roles in neuronal repair, but how localized calcium stores are differentially mobilized, or might be directly manipulated, to stimulate regeneration within native contexts is poorly understood. We find here that localized calcium release from the endoplasmic reticulum via ryanodine receptor (RyR) channels is critical in stimulating initial regeneration following traumatic cellular damage in vivo. Using laser axotomy of single neurons in Caenorhabditis elegans, we find that mutation of unc-68/RyR greatly impedes both outgrowth and guidance of the regenerating neuron. Performing extended in vivo calcium imaging, we measure subcellular calcium signals within the immediate vicinity of the regenerating axon end that are sustained for hours following axotomy and completely eliminated within unc-68/RyR mutants. Finally, using a novel optogenetic approach to periodically photo-stimulate the axotomized neuron, we can enhance its regeneration. The enhanced outgrowth depends on both amplitude and temporal pattern of excitation and can be blocked by disruption of UNC-68/RyR. This demonstrates the exciting potential of emerging optogenetic technology to beneficially manipulate cell physiology in the context of neuronal regeneration and indicates a link to the underlying cellular calcium signal. Taken as a whole, our findings define a specific localized calcium signal mediated by RyR channel activity that stimulates regenerative outgrowth, which may be dynamically manipulated for beneficial neurotherapeutic effects.


Assuntos
Cálcio/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Optogenética/métodos , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Channelrhodopsins , Mecanotransdução Celular/fisiologia , Frações Subcelulares/fisiologia
4.
Development ; 139(22): 4191-201, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23093425

RESUMO

The C. elegans left and right AWC olfactory neurons specify asymmetric subtypes, one default AWC(OFF) and one induced AWC(ON), through a stochastic, coordinated cell signaling event. Intercellular communication between AWCs and non-AWC neurons via a NSY-5 gap junction network coordinates AWC asymmetry. However, the nature of intercellular signaling across the network and how individual non-AWC cells in the network influence AWC asymmetry is not known. Here, we demonstrate that intercellular calcium signaling through the NSY-5 gap junction neural network coordinates a precise 1AWC(ON)/1AWC(OFF) decision. We show that NSY-5 gap junctions in C. elegans cells mediate small molecule passage. We expressed vertebrate calcium-buffer proteins in groups of cells in the network to reduce intracellular calcium levels, thereby disrupting intercellular communication. We find that calcium in non-AWC cells of the network promotes the AWC(ON) fate, in contrast to the autonomous role of calcium in AWCs to promote the AWC(OFF) fate. In addition, calcium in specific non-AWCs promotes AWC(ON) side biases through NSY-5 gap junctions. Our results suggest a novel model in which calcium has dual roles within the NSY-5 network: autonomously promoting AWC(OFF) and non-autonomously promoting AWC(ON).


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Sinalização do Cálcio , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Neurônios/citologia , Neurônios Receptores Olfatórios/metabolismo , Animais , Transporte Biológico , Caenorhabditis elegans/genética , Calbindinas , Cálcio/metabolismo , Comunicação Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Condutos Olfatórios , Neurônios Receptores Olfatórios/citologia , Proteína G de Ligação ao Cálcio S100/metabolismo , Transdução de Sinais
5.
Elife ; 82019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31364988

RESUMO

Mutations in pre-synaptic voltage-gated calcium channels can lead to familial hemiplegic migraine type 1 (FHM1). While mammalian studies indicate that the migraine brain is hyperexcitable due to enhanced excitation or reduced inhibition, the molecular and cellular mechanisms underlying this excitatory/inhibitory (E/I) imbalance are poorly understood. We identified a gain-of-function (gf) mutation in the Caenorhabditis elegans CaV2 channel α1 subunit, UNC-2, which leads to increased calcium currents. unc-2(zf35gf) mutants exhibit hyperactivity and seizure-like motor behaviors. Expression of the unc-2 gene with FHM1 substitutions R192Q and S218L leads to hyperactivity similar to that of unc-2(zf35gf) mutants. unc-2(zf35gf) mutants display increased cholinergic and decreased GABAergic transmission. Moreover, increased cholinergic transmission in unc-2(zf35gf) mutants leads to an increase of cholinergic synapses and a TAX-6/calcineurin-dependent reduction of GABA synapses. Our studies reveal mechanisms through which CaV2 gain-of-function mutations disrupt excitation-inhibition balance in the nervous system.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Mutação com Ganho de Função , Proteínas de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Transmissão Sináptica , Animais , Proteínas de Caenorhabditis elegans/genética , Cálcio/metabolismo , Proteínas de Membrana/genética , Proteínas Mutantes/genética
6.
Nat Commun ; 6: 6323, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25716181

RESUMO

Persistent neural activity, a sustained circuit output that outlasts the stimuli, underlies short-term or working memory, as well as various mental representations. Molecular mechanisms that underlie persistent activity are not well understood. Combining in situ whole-cell patch clamping and quantitative locomotion analyses, we show here that the Caenorhabditis elegans neuromuscular system exhibits persistent rhythmic activity, and such an activity contributes to the sustainability of basal locomotion, and the maintenance of acceleration after stimulation. The NALCN family sodium leak channel regulates the resting membrane potential and excitability of invertebrate and vertebrate neurons. Our molecular genetics and electrophysiology analyses show that the C. elegans NALCN, NCA, activates a premotor interneuron network to potentiate persistent motor circuit activity and to sustain C. elegans locomotion. Collectively, these results reveal a mechanism for, and physiological function of, persistent neural activity using a simple animal model, providing potential mechanistic clues for working memory in other systems.


Assuntos
Interneurônios/metabolismo , Locomoção , Canais de Sódio/metabolismo , Animais , Caenorhabditis elegans , Atividade Motora , Mutação , Canais de Sódio/genética , Potenciais Sinápticos
7.
Curr Opin Neurobiol ; 22(2): 187-93, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22226513

RESUMO

Escape behaviors are crucial to survive predator encounters. Touch to the head of Caenorhabditis elegans induces an escape response where the animal rapidly backs away from the stimulus and suppresses foraging head movements. The coordination of head and body movements facilitates escape from predacious fungi that cohabitate with nematodes in organic debris. An appreciation of the natural habitat of laboratory organisms, like C. elegans, enables a comprehensive neuroethological analysis of behavior. In this review we discuss the neuronal mechanisms and the ecological significance of the C. elegans touch response.


Assuntos
Caenorhabditis elegans/fisiologia , Reação de Fuga/fisiologia , Animais , Etologia , Vias Neurais/fisiologia , Neurologia
8.
Curr Biol ; 21(15): 1326-30, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21802299

RESUMO

Predator-prey interactions are vital determinants in the natural selection of behavioral traits. Gentle touch to the anterior half of the body of Caenorhabditis elegans elicits an escape response in which the animal quickly reverses and suppresses exploratory head movements [1, 2]. Here, we investigate the ecological significance of the touch response in predator-prey interactions between C. elegans and predacious fungi that catch nematodes using constricting hyphal rings. We show that the constricting rings of Drechslerella doedycoides catch early larval stages with a diameter similar to the trap opening. There is a delay between the ring entry and ring closure, which allows the animal to withdraw from the trap before being caught. Mutants that fail to suppress head movements in response to touch are caught more efficiently than the wild-type. This demonstrates that the coordination of motor programs allows C. elegans to smoothly retract from a fungal noose and evade capture. Our results suggest that selective pressures imposed by predacious fungi have shaped the evolution of C. elegans escape behavior.


Assuntos
Caenorhabditis elegans/fisiologia , Fungos/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Mutação
10.
Neuron ; 62(4): 526-38, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19477154

RESUMO

A key feature of escape responses is the fast translation of sensory information into a coordinated motor output. In C. elegans, anterior touch initiates a backward escape response in which lateral head movements are suppressed. Here, we show that tyramine inhibits head movements and forward locomotion through the activation of a tyramine-gated chloride channel, LGC-55. lgc-55 mutant animals have defects in reversal behavior and fail to suppress head oscillations in response to anterior touch. lgc-55 is expressed in neurons and muscle cells that receive direct synaptic inputs from tyraminergic motor neurons. Therefore, tyramine can act as a classical inhibitory neurotransmitter. Activation of LGC-55 by tyramine coordinates the output of two distinct motor programs, locomotion and head movements that are critical for a C. elegans escape response.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Caenorhabditis elegans/fisiologia , Canais de Cloreto/fisiologia , Reação de Fuga/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Tiramina/farmacologia , Análise de Variância , Animais , Animais Geneticamente Modificados , Comportamento Animal , Proteínas de Caenorhabditis elegans , Canais de Cloreto/genética , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Movimentos da Cabeça/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Locomoção/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Mutação/genética , Músculos do Pescoço/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Estimulação Física/métodos , Análise de Sequência de Proteína , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa