Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Pathol ; 34(10): 1058-61, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14608542

RESUMO

A novel 4949-base pair mitochondrial DNA (mtDNA) deletion was detected in various tissues in a postmortem study of a patient with Kearns-Sayre syndrome (KSS). Deleted mtDNA levels were higher in skeletal muscle and brain and lower in kidney, working myocardium, and endocrine tissues (thyroid, parathyroids, pancreas, and adrenal glands). The distribution of the deletion in skeletal muscle and conducting myocardium was analyzed by means of laser capture microdissection (LCM). In skeletal muscle, the abundance of deleted mtDNA was slightly higher in cytochrome c oxidase (COX)-negative fibers (70%) than in COX-positive fibers (64%), whereas in the conducting myocardium it was lower in the atrioventricular node (9%) than in the sinus node and bundle of His (30% and 32%, respectively). In this study, LCM proved to be a reliable technique for a more accurate assessment of genotype/phenotype correlation when investigating mtDNA-related disorders.


Assuntos
DNA Mitocondrial/genética , Deleção de Genes , Síndrome de Kearns-Sayre/genética , Terapia a Laser , Microdissecção/métodos , Adulto , DNA Mitocondrial/análise , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Síndrome de Kearns-Sayre/enzimologia , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Reação em Cadeia da Polimerase
2.
Cytokine ; 29(6): 251-5, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15749025

RESUMO

BACKGROUND: Intra-peritoneal adipose tissue is recognized as a predictor of metabolic syndrome and may contribute to the risk for cardiovascular disease by the production of adipocytokines, including adiponectin. Nevertheless, there is no knowledge on whether other visceral depots of adipose tissue, including the epicardial fat, have any metabolically active role, including production of adiponectin. AIM OF THE STUDY: We sought to evaluate adiponectin protein expression in epicardial adipose tissue in vivo both in patients with severe coronary artery disease (CAD) and in subjects without CAD. METHODS: Twenty-two patients were enrolled for the study. We selected 16 patients who underwent elective coronary artery bypass graft surgery for critical CAD, 5 who underwent surgery for valve replacement and 1 for correction of an interatrial defect. Epicardial adipose tissue biopsy samples were obtained before the initiation of cardiopulmonary bypass. Adiponectin protein level in epicardial adipose tissue was evaluated by Western blotting. RESULTS: Adiponectin protein value, expressed as adiponectin/actin ratio, in epicardial adipose tissue was significantly lower in patients with severe CAD than in those without CAD (1.42 +/- 0.77 vs 2.36 +/- 0.84 p = 0.02, 95% CI 0.64-1.74). CONCLUSIONS: This study showed for the first time that human epicardial adipose tissue expresses adiponectin. Adiponectin expression is significantly lower in epicardial fat isolated from patients with CAD.


Assuntos
Tecido Adiposo/metabolismo , Doença da Artéria Coronariana/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pericárdio/metabolismo , Adiponectina , Tecido Adiposo/ultraestrutura , Adulto , Idoso , Doença da Artéria Coronariana/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa