Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(17): 173004, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978230

RESUMO

Future metrology standards will be partly based on physical quantities computed from first principles rather than measured. In particular, a new pressure standard can be established if the dynamic polarizability of helium can be determined from theory with an uncertainty smaller than 0.2 ppm. We present calculations of the frequency-dependent part of this quantity including relativistic effects with full account of leading nuclear recoil terms and using highly optimized explicitly correlated basis sets. A particular emphasis is put on uncertainty estimates. At the He-Ne laser wavelength of 632.9908 nm, the computed polarizability value of 1.39181141 a.u. has uncertainty of 0.1 ppm that is 2 orders of magnitude smaller than those of the most accurate polarizability measurements. We also obtained an accurate expansion of the helium refractive index in powers of density.

2.
J Chem Phys ; 135(8): 084310, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21895188

RESUMO

Gas-phase nuclear magnetic resonance (NMR) spectra demonstrating the effect of weak intermolecular forces on the NMR shielding constants of the interacting species are reported. We analyse the interaction of the molecular hydrogen isotopomers with He, Ne, and Ar, and the interaction in the He-CO(2) dimer. The same effects are studied for all these systems in the ab initio calculations. The comparison of the experimental and computed shielding constants is shown to depend strongly on the treatment of the bulk susceptibility effects, which determine in practice the pressure dependence of the experimental values. Best agreement of the results is obtained when the bulk susceptibility correction in rare gas solvents is evaluated from the analysis of the He-rare gas interactions, and when the shielding of deuterium in D(2)-rare gas systems is considered.


Assuntos
Gases , Espectroscopia de Ressonância Magnética/métodos , Hidrogênio/química , Termodinâmica
3.
J Chem Theory Comput ; 12(12): 5895-5919, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951663

RESUMO

A method is developed for automatic generation of intermolecular two-body, rigid-monomer potential energy surfaces based on symmetry-adapted perturbation theory (SAPT). It is also possible to substitute SAPT interaction energies by values computed using sufficiently high-level supermolecular methods. The long-range component of the potential is obtained from a rigorous asymptotic expansion with ab initio computed coefficients which seamlessly connects to SAPT interaction energies at large separations. An accompanying software package has been developed and tested successfully on eight systems ranging in size from the Cl--H2O dimer to the cyclotrimethylene trinitramine dimer containing 42 atoms total. The potentials have a typical fit error of about 0.2 kcal/mol in the negative energy region. The accuracy may be further improved by including off-atomic sites or increasing their number. All aspects of potential development were designed to work reliably on a broad range of systems with no human intervention.

4.
J Chem Theory Comput ; 7(10): 3105-15, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-26598154

RESUMO

The dissociation energies from all rovibrational levels of H2 and D2 in the ground electronic state are calculated with high accuracy by including relativistic and quantum electrodynamics (QED) effects in the nonadiabatic treatment of the nuclear motion. For D2, the obtained energies have theoretical uncertainties of 0.001 cm(-1). For H2, similar uncertainties are for the lowest levels, while for the higher ones the uncertainty increases to 0.005 cm(-1). Very good agreement with recent high-resolution measurements of the rotational v = 0 levels of H2, including states with large angular momentum J, is achieved. This agreement would not have been possible without accurate evaluation of the relativistic and QED contributions and may be viewed as the first observation of the QED effects, mainly the electron self-energy, in a molecular spectrum. For several electric quadrupole transitions, we still observe certain disagreement with experimental results, which remains to be explained.

5.
J Chem Theory Comput ; 5(11): 3039-48, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26609983

RESUMO

The dissociation energy of molecular hydrogen is determined theoretically with a careful estimation of error bars by including nonadiabatic, relativistic, and quantum electrodynamics (QED) corrections. The relativistic and QED corrections were obtained at the adiabatic level of theory by including all contributions of the order α(2) and α(3) as well as the major (one-loop) α(4) term, where α is the fine-structure constant. The computed α(0), α(2), α(3), and α(4) components of the dissociation energy of the H2 isotopomer are 36 118.7978(2), -0.5319(3), -0.1948(2), and -0.0016(8) cm(-1), respectively, while their sum amounts to 36 118.0695(10) cm(-1), where the total uncertainty includes the estimated size (±0.0004 cm(-1)) of the neglected relativistic nonadiabatic/recoil corrections. The obtained theoretical value of the dissociation energy is in excellent agreement with the most recent experimental determination 36 118.0696(4) cm(-1) [J. Liu et al. J. Chem. Phys. 2009, 130, 174 306]. This agreement would have been impossible without inclusion of several subtle QED contributions which have not been considered, thus far, for molecules. A similarly good agreement is observed for the leading vibrational and rotational energy differences. For the D2 molecule we observe, however, a small disagreement between our value 36 748.3633(9) cm(-1) and the experimental result 36 748.343(10) cm(-1) obtained in a somewhat older and less precise experiment [Y. P. Zhang et al. Phys. Rev. Lett. 2004, 92, 203003]. The reason of this discrepancy is not known.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa