Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Enzyme Inhib Med Chem ; 39(1): 2337191, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38634597

RESUMO

Colon cancer remains a clinical challenge in industrialised countries. Its treatment with 5-Flurouracil (5-FU) develops many side effects and resistance. Thus, several strategies have been undertaken so far, including the use of drug cocktails and polypharmacology. Heme oxygenase-1 (HO-1) is an emerging molecular target in the treatment of various cancers. We recently demonstrated that a combination of HO-1 inhibitors with 5-FU and the corresponding hybrids SI1/17, SI1/20, and SI1/22, possessed anticancer activity against prostate and lung cancer cells. In this work, we evaluated these hybrids in a model of colon cancer and found that SI1/22 and the respective combo have greater potency than 5-FU. Particularly, compounds inhibit HO-1 activity in cell lysates, increase ROS and the expression of HO-1, SOD, and Nrf2. Moreover, we observed a decrease of pro-caspase and an increase in cleaved PARP-1 and p62, suggesting apoptotic and autophagic cell death and potential application of these drugs as anticancer agents.


Assuntos
Antineoplásicos , Neoplasias do Colo , Fluoruracila , Humanos , Masculino , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Fluoruracila/farmacologia , Heme Oxigenase-1/antagonistas & inibidores
2.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791428

RESUMO

Glioblastoma multiforme (GBM) represents the deadliest tumor among brain cancers. It is a solid tumor characterized by uncontrolled cell proliferation generating the hypoxic niches in the cancer core. By inducing the transcription of hypoxic inducible factor (HIF), hypoxia triggers many signaling cascades responsible for cancer progression and aggressiveness, including enhanced expression of vascular endothelial growth factor (VEGF) or antioxidant enzymes, such as heme oxygenase-1 (HO-1). The present work aimed to investigate the link between HO-1 expression and the hypoxic microenvironment of GBM by culturing two human glioblastoma cell lines (U87MG and A172) in the presence of a hypoxic mimetic agent, deferoxamine (DFX). By targeting hypoxia-induced HO-1, we have tested the effect of a novel acetamide-based HO-1 inhibitor (VP18/58) on GBM progression. Results have demonstrated that hypoxic conditions induced upregulation and nuclear expression of HO-1 in a cell-dependent manner related to malignant phenotype. Moreover, our data demonstrated that the HO-1 inhibitor counteracted GBM progression by modulating the HIFα/HO-1/VEGF signaling cascade in cancer cells bearing more malignant phenotypes.


Assuntos
Acetamidas , Glioblastoma , Heme Oxigenase-1 , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Humanos , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Heme Oxigenase-1/metabolismo , Linhagem Celular Tumoral , Acetamidas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos
3.
FASEB J ; 36(10): e22535, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36070139

RESUMO

Patients with sickle cell disease (SCD) display priapism. Clinical studies have shown a strong positive correlation between priapism and high levels of intravascular hemolysis in men with SCD. However, there are no experimental studies that show that intravascular hemolysis promotes alterations in erectile function. Therefore, we aimed to evaluate the corpus cavernosum smooth muscle relaxant function in a murine model that displays intravascular hemolysis induced by phenylhydrazine (PHZ), as well as the role of intravascular hemolysis in increasing the stress oxidative in the penis. Corpus cavernosum strips were dissected free and placed in organ baths. Acetylcholine and electrical field stimulation (EFS)-induced corpus cavernosum relaxations in vitro were obtained. Increased corpus cavernosum relaxant responses to acetylcholine and EFS were observed in the PHZ group. Protein expression of heme oxygenase-1 increased in the corpus cavernosum of the PHZ group, but PDE5 protein expression was not modified. Preincubation with the heme oxygenase inhibitor 1 J completely reversed the increased relaxant responses to acetylcholine and EFS in PHZ mice. Protein expression of NADPH oxidase subunit gp91phox, 3-nitrotyrosine, and 4-hydroxynonenal increased in the corpus cavernosum of the PHZ group, suggesting a state of oxidative stress. Basal cGMP production was lower in the PHZ group. Our results show that intravascular hemolysis promotes increased corpus cavernosum smooth muscle relaxation associated with increased HO-1 expression, as well as increased oxidative stress associated with upregulation of gp91phox expression. Moreover, our study supports clinical studies that point to a strong positive correlation between priapism and high levels of intravascular hemolysis in men with SCD.


Assuntos
Anemia Falciforme , Priapismo , Acetilcolina/farmacologia , Anemia Falciforme/complicações , Anemia Falciforme/metabolismo , Animais , Hemólise , Humanos , Masculino , Camundongos , Pênis , Priapismo/complicações
4.
Bioorg Med Chem ; 73: 117032, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202063

RESUMO

The overexpression of σ receptors (σRs) in various types of tumors has prompted a deep investigation of their role in cancer pathophysiology. Consequently, σR ligands have been widely studied in vitro and in vivo for their antiproliferative effects as a novel potential class of chemotherapeutic agents, both alone and in combination with other anticancer drugs. A growing body of evidence highlights that σR ligands can inhibit cancer cells' survival, migration, and proliferation, thanks to the modulation of a wide panel of tumorigenic pathways. In addition to their antitumor activity, σR ligands are gaining momentum as radiotracers for PET and SPECT imaging applications. The purpose of this review is to report on recent advances in the development of σR ligands. In particular, herein, we describe the structure-activity relationships of structurally diverse mixed σ1R/σ2R ligands that showed promising antitumor profiles towards a variety of cancer cell lines.


Assuntos
Antineoplásicos , Neoplasias , Receptores sigma , Antineoplásicos/farmacologia , Humanos , Ligantes , Receptores sigma/metabolismo , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163777

RESUMO

Lung cancer (LC) is one of the leading causes of cancer occurrence and mortality worldwide. Treatment of patients with advanced and metastatic LC presents a significant challenge, as malignant cells use different mechanisms to resist chemotherapy. Drug resistance (DR) is a complex process that occurs due to a variety of genetic and acquired factors. Identifying the mechanisms underlying DR in LC patients and possible therapeutic alternatives for more efficient therapy is a central goal of LC research. Advances in nanotechnology resulted in the development of targeted and multifunctional nanoscale drug constructs. The possible modulation of the components of nanomedicine, their surface functionalization, and the encapsulation of various active therapeutics provide promising tools to bypass crucial biological barriers. These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. This review provides a broad framework for understanding the different molecular mechanisms of DR in lung cancer, presents novel nanomedicine therapeutics aimed at improving the efficacy of treatment of various forms of resistant LC; outlines current challenges in using nanotechnology for reversing DR; and discusses the future directions for the clinical application of nanomedicine in the management of LC resistance.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Nanomedicina Teranóstica , Microambiente Tumoral/efeitos dos fármacos
6.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628518

RESUMO

The term ferroptosis refers to a peculiar type of programmed cell death (PCD) mainly characterized by extensive iron-dependent lipid peroxidation. Recently, ferroptosis has been suggested as a potential new strategy for the treatment of several cancers, including breast cancer (BC). In particular, among the BC subtypes, triple negative breast cancer (TNBC) is considered the most aggressive, and conventional drugs fail to provide long-term efficacy. In this context, our study's purpose was to investigate the mechanism of ferroptosis in breast cancer cell lines and reveal the significance of heme oxygenase (HO) modulation in the process, providing new biochemical approaches. HO's effect on BC was evaluated by MTT tests, gene silencing, Western blot analysis, and measurement of reactive oxygen species (ROS), glutathione (GSH) and lipid hydroperoxide (LOOH) levels. In order to assess HO's implication, different approaches were exploited, using two distinct HO-1 inducers (hemin and curcumin), a well-known HO inhibitor (SnMP) and a selective HO-2 inhibitor. The data obtained showed HO's contribution to the onset of ferroptosis; in particular, HO-1 induction seemed to accelerate the process. Moreover, our results suggest a potential role of HO-2 in erastin-induced ferroptosis. In view of the above, HO modulation in ferroptosis can offer a novel approach for breast cancer treatment.


Assuntos
Ferroptose , Heme Oxigenase (Desciclizante) , Neoplasias de Mama Triplo Negativas , Glutationa , Heme Oxigenase (Desciclizante)/metabolismo , Humanos , Peróxidos Lipídicos , Espécies Reativas de Oxigênio/metabolismo
7.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364085

RESUMO

Silver nanoparticles (AgNPs) are widely used commercially due to their antimicrobial effects. Little is known about the effect of AgNPs on neural transmission and pain response. The aim of this study was to assess the anti-nociceptive activity of AgNPs. AgNPs were prepared at 16 ug/mL, white albino rats were injected with various doses of AgNPs, and challenged using a hot-plate test and paw withdrawal latency (PWL) was measured. The chronic constriction injury (CCI) model was utilized to evaluate the pedal withdrawal reflex and tail withdrawal reflex. An electrophysiological study was conducted utilizing colon longitudinal muscle strips. AgNPs increased the latency of PWL in a dose-dependent matter over the duration of 6 h. The paw withdrawal threshold in animals with CCI significantly increased after AgNPs administration. In isolated colon longitudinal muscle strips, AgNPs significantly reduced the colonic migrating motor complexes (MMCs) and contraction. This action was completely reversed after removing the AgNPs and adding acetylcholine to the preparation. In this study, AgNPs showed significant anti-nociception properties. To our knowledge, this is the first report to describe this pharmacological action of AgNPs.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Prata/farmacologia , Ratos
8.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630697

RESUMO

This paper reports on a novel series of tyrosine kinase inhibitors (TKIs) potentially useful for the treatment of chronic myeloid leukemia (CML). The newly designed and synthesized compounds are structurally related to nilotinib (NIL), a second-generation oral TKI, and to a series of imatinib (IM)-based TKIs, previously reported by our research group, these latter characterized by a hybrid structure between TKIs and heme oxygenase-1 (HO-1) inhibitors. The enzyme HO-1 was selected as an additional target since it is overexpressed in many cases of drug resistance, including CML. The new derivatives 1a-j correctly tackle the chimeric protein BCR-ABL. Therefore, the inhibition of TK was comparable to or higher than NIL and IM for many novel compounds, while most of the new analogs showed only moderate potency against HO-1. Molecular docking studies revealed insights into the binding mode with BCR-ABL and HO-1, providing a structural explanation for the differential activity. Cytotoxicity on K562 CML cells, both NIL-sensitive and -resistant, was evaluated. Notably, some new compounds strongly reduced the viability of K562 sensitive cells.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Doença Crônica , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
9.
J Comput Aided Mol Des ; 35(3): 297-314, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33615401

RESUMO

Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and transmitted by the bite of a sand fly. To date, most available drugs for treatment are toxic and beyond the economic means of those affected by the disease. Protein disulfide isomerase (PDI) is a chaperone protein that plays a major role in the folding of newly synthesized proteins, specifically assisting in disulfide bond formation, breakage, or rearrangement in all non-native proteins. In previous work, we demonstrated that Leishmania major PDI (LmPDI) has an essential role in pathogen virulence. Furthermore, inhibition of LmPDI further blocked parasite infection in macrophages. In this study, we utilized a computer-aided approach to design a series of LmPDI inhibitors. Fragment-based virtual screening allowed for the understanding of the inhibitors' modes of action on LmPDI active sites. The generated compounds obtained after multiple rounds of virtual screening were synthesized and significantly inhibited target LmPDI reductase activity and were shown to decrease in vitro parasite growth in human monocyte-derived macrophages. This novel cheminformatics and synthetic approach led to the identification of a new series of compounds that might be optimized into novel drugs, likely more specific and less toxic for the treatment of leishmaniasis.


Assuntos
Anti-Infecciosos/síntese química , Inibidores Enzimáticos/química , Hexaclorofeno/síntese química , Leishmania major/enzimologia , Leishmaniose/tratamento farmacológico , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/síntese química , Anti-Infecciosos/farmacologia , Domínio Catalítico , Desenho Assistido por Computador , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Hexaclorofeno/farmacologia , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
10.
Bioorg Chem ; 117: 105428, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710668

RESUMO

Up-regulation of HO-1 had been frequently reported in different cases and types of human malignancies. Since poor clinical outcomes are reported in these cases, this enzyme's inhibition is considered a valuable and proven anticancer approach. To identify novel HO-1 inhibitors suitable for drug development, we report a structure-guided fragment-based approach to identify new lead compounds. Different parts of the selected molecules were analyzed, and the different series of novel compounds were virtually evaluated. The growing experiments of the classical HO-1 inhibitors structure led us to different hit-compounds. A synthetic pathway for six selected molecules was designed, and the compounds were synthesized. The biological activity revealed that molecules 10 and 12 inhibit the HO-1 activity with an IC50 of 1.01 and 0.90 µM, respectively. This study suggested that our growing approach was successful, and these results are ongoing for further development.


Assuntos
Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Imidazóis/farmacologia , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Heme Oxigenase (Desciclizante)/metabolismo , Imidazóis/síntese química , Imidazóis/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
11.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207832

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous subtype of tumors that tests negative for estrogen receptors, progesterone receptors, and excess HER2 protein. The mainstay of treatment remains chemotherapy, but the therapeutic outcome remains inadequate. This paper investigates the potential of a duocarmycin derivative, tafuramycin A (TFA), as a new and more effective chemotherapy agent in TNBC treatment. To this extent, we optimized the chemical synthesis of TFA, and we encapsulated TFA in a micellar system to reduce side effects and increase tumor accumulation. In vitro and in vivo studies suggest that both TFA and SMA-TFA possess high anticancer effects in TNBC models. Finally, the encapsulation of TFA offered a preferential avenue to tumor accumulation by increasing its concentration at the tumor tissues by around four times in comparison with the free drug. Overall, the results provide a new potential strategy useful for TNBC treatment.


Assuntos
Antineoplásicos/farmacologia , Alcaloides Indólicos/farmacologia , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Alcaloides Indólicos/química , Maleatos/química , Maleatos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Poliestirenos/química , Poliestirenos/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
12.
Mol Biol Rep ; 47(3): 1949-1964, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32056044

RESUMO

Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death mainly due to its high metastatic rate. Impairment of redox homeostasis mechanisms has been previously described in NSCLC and is associated with the disease itself as well as with comorbidities such as smoking. The aim of the present in vitro study was to evaluate the effect of selective and non-competitive inhibition of heme oxygenase-1 (HO-1) on cancer redox homeostasis with particular regards to glutathione (GSH) metabolism related enzymes. NSCLC cell line (A549) was treated with the HO-1 activity inhibitor VP13/47 (10 µM) and we further evaluated cell viability, apoptosis, mitochondrial dysfunction and oxidative stress. Our results showed that VP13/47 significantly reduced HO-1 expression and total HO activity thus, resulting in a significant reduction of cell viability, proliferation and increased apoptosis, mitochondrial dysfunction and oxidative stress. Consistently with increased oxidative stress, we also showed that reduced GSH was significantly decreased and such effect was also accompanied by a significant downregulation of the enzymes involved in its biosynthesis. Taken all together our results show that selective HO-1 inhibition significantly impairs NSCLC progression and may represent a possible pharmacological strategy for new chemotherapy agents.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Hidrocarbonetos Bromados/farmacologia , Imidazóis/farmacologia , Neoplasias Pulmonares/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Inibidores Enzimáticos/química , Humanos , Hidrocarbonetos Bromados/química , Imidazóis/química , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo
13.
Bioorg Chem ; 104: 104310, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33010625

RESUMO

The enzymatic family of heme oxygenase (HO) is accountable for heme breakdown. Among the two isoforms characterized to date, HO-2 is poorly investigated due to the lack of potent HO-2 chemical modulators and the greater attentiveness towards HO-1 isoform. In the present paper, we report the rational design and synthesis of HO-2 inhibitors achieved by modulating the volume of known HO-1 inhibitors. The inhibition preference has been moved from HO-1 to HO-2 by merely increasing the volume of the substituent in the western region of the inhibitors. Docking studies demonstrated that new derivatives soak differently in the two binding pockets, probably due to the presence of a Tyr187 residue in HO-2. These findings could be useful for the design of new selective HO-2 compounds.


Assuntos
Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Nitrilas/farmacologia , Algoritmos , Animais , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Heme Oxigenase (Desciclizante)/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Estrutura Molecular , Nitrilas/síntese química , Nitrilas/química , Ratos , Baço/enzimologia , Relação Estrutura-Atividade
14.
Bioorg Chem ; 99: 103777, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222619

RESUMO

Heme oxygenase-1 (HO-1) has been recognized as extensively involved in the development and aggravation of cancer, cell propagation and at in the mechanism of chemoresistance development. Low micromolar HO-1 inhibitors selective towards HO-2 has been recently reported, wherein the azole core and the hydrophobic residues are linked through a phenylethanolic spacer bearing a chiral center. Since less information are known about the stereoselective requirements for HO-1 inhibition, here we report the enantiomeric resolution of 1-(biphenyl-3-yl)-2-(1H-imidazol-1-yl)ethanol (1) and 1-[4-[(4-bromobenzyl)oxy]phenyl]-2-(1H-imidazol-1-yl)ethanol (2), two among the most potent and selective HO-1 inhibitors known thus far when tested as racemates. The absolute configuration was established for 1 by a combination of experimental and in silico derived electronic circular dichroism spectra, while docking approaches were useful in the case of compound 2. Biological evaluation of pure enantiomers highlighted higher HO-1 inhibitory activity of (R)-enantiomers. Docking studies demonstrated the importance of hydrogen bond interaction, more pronounced for the (R)-enantiomers, with a consensus water molecule within the binding pocket. The present study demonstrates that differences in three-dimensional structure amongst compounds 1 and 2 enantiomers affect significantly the selectivity of these HO-1 inhibitors.


Assuntos
Azóis/farmacologia , Inibidores Enzimáticos/farmacologia , Álcool Feniletílico/farmacologia , Animais , Azóis/química , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/metabolismo , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Álcool Feniletílico/química , Ratos , Ratos Sprague-Dawley , Baço/enzimologia , Estereoisomerismo , Relação Estrutura-Atividade
15.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333908

RESUMO

Novel heme oxygenase-1 (HO-1) inducers based on dimethyl fumarate (DMF) structure are reported in this paper. These compounds are obtained by modification of the DMF backbone. Particularly, maintaining the α, ß-unsaturated dicarbonyl function as the central chain crucial for HO-1 induction, different substituted or unsubstituted phenyl rings are introduced by means of an ester or amide linkage. Symmetric and asymmetric derivatives are synthesized. All compounds are tested on a human hepatic stellate cell line LX-2 to assay their capacity for modifying HO-1 expression. Compounds 1b, 1l and 1m stand out for their potency as HO-1 inducers, being 2-3 fold more active than DMF, and for their ability to reverse reactive oxygen species (ROS) production mediated using palmitic acid (PA). These properties, coupled with a low toxicity toward LX-2 cell lines, make these compounds potentially useful for treatment of diseases in which HO-1 overexpression may counteract inflammation, such as hepatic fibrosis. Docking studies show a correlation between predicted binding free energy and experimental HO-1 expression data. These preliminary results may support the development of new approaches in the management of liver fibrosis.


Assuntos
Fumarato de Dimetilo/química , Fumarato de Dimetilo/farmacologia , Heme Oxigenase-1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Fumarato de Dimetilo/análogos & derivados , Fumarato de Dimetilo/síntese química , Humanos , Simulação de Acoplamento Molecular , Ácido Palmítico/farmacologia , Espécies Reativas de Oxigênio/metabolismo
16.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168943

RESUMO

In this paper, a novel series of imidazole-based heme oxygenase-1 (HO-1) inhibitors is reported. These compounds were obtained by modifications of previously described high potent and selective arylethanolimidazoles. In particular, simplification of the central linker and repositioning of the hydrophobic portion were carried out. Results indicate that a hydroxyl group in the central region is crucial for the potency as well as the spatial distribution of the hydrophobic portion. Docking studies revealed a similar interaction of the classical HO-1 inhibitors with the active site of the protein. The most potent and selective compound (5a) was tested for its potential cytotoxic activity against hormone-sensitive and hormone-resistant breast cancer cell lines (MCF-7 and MDA-MB-231).


Assuntos
Antineoplásicos/síntese química , Neoplasias da Mama/enzimologia , Heme Oxigenase-1/antagonistas & inibidores , Imidazóis/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/química , Imidazóis/farmacologia , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular
17.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316541

RESUMO

The synthesis of seventeen new 1,3-diaryl-5-oxo-proline derivatives as endothelin receptor (ETR) ligands is described. The structural configuration of the new molecules was determined by analyzing selected signals in proton NMR spectra. In vitro binding assays of the human ETA and ETB receptors allowed us to identify compound 31h as a selective ETAR ligand. The molecular docking of the selected compounds and the ETA antagonist atrasentan in the ETAR homology model provided insight into the structural elements required for the affinity and the selectivity of the ETAR subtype.


Assuntos
Técnicas de Química Sintética , Dipeptídeos/química , Modelos Moleculares , Receptor de Endotelina A/química , Sítios de Ligação , Dipeptídeos/síntese química , Ligantes , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Receptor de Endotelina A/metabolismo , Análise Espectral
18.
Compr Rev Food Sci Food Saf ; 19(6): 3219-3240, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337047

RESUMO

Nowadays due to the concern with the environmental impact of analytical techniques and in order to reduce the ecological footprint there is a tendency to use more efficient and faster procedures that use a smaller amount of organic solvents. Polyphenols have been widely studied in plant-based matrices due to their wide and potent biological properties; however there are no standardized procedures both for sample preparation and analysis of these compounds. The second of a two-part review will carry out a critical review of the extraction procedures and analytical methods applied to polyphenols and their selection criteria over a wide range of factors in relation to commerce-associated, environmental, and economic factors. It is foreseen that in the future the analysis of polyphenols in plant-based matrices includes the use of techniques that allow the simultaneous determination of different subclasses of polyphenols using fast, sophisticated, and automated techniques that allow the minimal consumption of solvents.


Assuntos
Manipulação de Alimentos , Polifenóis/análise , Compostos Fitoquímicos , Polifenóis/química
19.
Pharmacol Res ; 141: 73-84, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30550953

RESUMO

JAK/STAT transduction pathway is a highly conserved pathway implicated in regulating cellular proliferation, differentiation, survival and apoptosis. Dysregulation of this pathway is involved in the onset of autoimmune, haematological, oncological, metabolic and neurological diseases. Over the last few years, the research of anti-neuroinflammatory agents has gained considerable attention. The ability to diminish the STAT-induced transcription of inflammatory genes is documented for both natural compounds (such as polyphenols) and chemical drugs. Among polyphenols, quercetin and curcumin directly inhibit STAT, while Berberis vulgaris L. and Sophora alopecuroides L extracts act indirectly. Also, the Food and Drug Administration has approved several JAK/STAT inhibitors (direct or indirect) for treating inflammatory diseases, indicating STAT can be considered as a therapeutic target for neuroinflammatory pathologies. Considering the encouraging data obtained so far, clinical trials are warranted to demonstrate the effectiveness and potential use in the clinical practice of STAT inhibitors to treat inflammation-associated neurodegenerative pathologies.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Fatores de Transcrição STAT/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Humanos , Inflamação/metabolismo , Doenças do Sistema Nervoso/metabolismo , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Fatores de Transcrição STAT/química , Fatores de Transcrição STAT/metabolismo
20.
Mar Drugs ; 17(2)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759842

RESUMO

Over-regulation of Heme oxygenase 1 (HO-1) has been recently identified in many types of human cancer, and in these cases, poor clinical outcomes are normally reported. Indeed, the inhibition of HO-1 is being considered as an anticancer approach. Imidazole scaffold is normally present in most of the classical HO-1 inhibitors and seems indispensable to the inhibitory activity due to its strong interaction with the Fe(II) of the heme group. In this paper, we searched for new potentially HO-1 inhibitors among three different databases: Marine Natural Products (MNP), ZINC Natural Products (ZNP) and Super Natural II (SN2). 484,527 compounds were retrieved from the databases and filtered through four statistical/computational filters (2D descriptors, 2D-QSAR pharmacophoric model, 3D-QSAR pharmacophoric model, and docking). Different imidazole-based compounds were suggested by our methodology to be potentially active in inhibiting the HO-1, and the results have been rationalized by the bioactivity of the filtered molecules reported in the literature.


Assuntos
Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Heme Oxigenase-1/antagonistas & inibidores , Imidazóis/farmacologia , Produtos Biológicos/química , Simulação por Computador , Bases de Dados Factuais , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Imidazóis/química , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa