Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Anal Bioanal Chem ; 411(2): 439-448, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30498982

RESUMO

Tuberculosis (TB) is the first cause of death from infectious diseases worldwide. Only a single anti-TB vaccine is currently available for clinical use, but its efficacy is not achieved with certainty. The aim of this work is to provide a basis for the rational design of a neo-glycoconjugate vaccine against TB. Structural characterization of recombinant antigenic proteins from Mycobacterium tuberculosis (MTB) Ag85B (rAg85B, variants, and semi-synthetic glycoconjugates) was initially carried out. Identification of antibody epitope analyses by proteolytic affinity-mass spectrometry and surface plasmon resonance (SPR) biosensor analyses were performed in order to qualitatively identify and quantitatively characterize interaction structures of the antigens with antibodies from different sources. A commercial monoclonal antibody and polyclonal antibodies from different sources (patients with active TB, vaccinated individuals, and a healthy control) were employed to analyze antigen-antibody interactions. These combined approaches provided the identification of different assembled epitope regions on the recombinant MTB antigens, their affinity binding constants in the interactions with specific antibodies, and revealed the importance of protection from excessive glycosylation. The identified epitope peptides should constitute a suitable basis for the design of new specific target vaccines. Graphical abstract ᅟ.


Assuntos
Anticorpos Antibacterianos , Afinidade de Anticorpos , Antígenos de Bactérias , Epitopos/química , Espectrometria de Massas/métodos , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Técnicas Biossensoriais , Modelos Moleculares , Conformação Proteica , Proteólise
2.
Molecules ; 22(7)2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28661444

RESUMO

Tuberculosis is still one of the most deadly infectious diseases worldwide, and the use of conjugated antigens, obtained by combining antigenic oligosaccharides, such as the lipoarabinomannane (LAM), with antigenic proteins from Mycobacterium tuberculosis (MTB), has been proposed as a new strategy for developing efficient vaccines. In this work, we investigated the effect of the chemical glycosylation on two recombinant MTB proteins produced in E. coli with an additional seven-amino acid tag (recombinant Ag85B and TB10.4). Different semi-synthetic glycoconjugated derivatives were prepared, starting from mannose and two disaccharide analogs. The glycans were activated at the anomeric position with a thiocyanomethyl group, as required for protein glycosylation by selective reaction with lysines. The glycosylation sites and the ex vivo evaluation of the immunogenic activity of the different neo-glycoproteins were investigated. Glycosylation does not modify the immunological activity of the TB10.4 protein. Similarly, Ag85B maintains its B-cell activity after glycosylation while showing a significant reduction in the T-cell response. The results were correlated with the putative B- and T-cell epitopes, predicted using a combination of in silico systems. In the recombinant TB10.4, the unique lysine is not included in any T-cell epitope. Lys30 of Ag85B, identified as the main glycosylation site, proved to be the most important site involved in the formation of T-cell epitopes, reasonably explaining why its glycosylation strongly influenced the T-cell activity. Furthermore, additional lysines included in different epitopes (Lys103, -123 and -282) are also glycosylated. In contrast, B-cell epitopic lysines of Ag85B were found to be poorly glycosylated and, thus, the antibody interaction of Ag85B was only marginally affected after coupling with mono- or disaccharides.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Sequência de Aminoácidos , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Simulação por Computador , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Glicoconjugados , Glicoproteínas/química , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Glicosilação , Humanos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
3.
Biochim Biophys Acta ; 1854(9): 1150-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25701391

RESUMO

In the brain, d-amino acid oxidase plays a key role in modulating the N-methyl-d-aspartate receptor (NMDAR) activation state, catalyzing the stereospecific degradation of the coagonist d-serine. A relationship between d-serine signaling deregulation, NMDAR dysfunction, and CNS diseases is presumed. Notably, the R199W substitution in human DAAO (hDAAO) was associated with familial amyotrophic lateral sclerosis (ALS), and further coding substitutions, i.e., R199Q and W209R, were also deposited in the single nucleotide polymorphism database. Here, we investigated the biochemical properties of these different hDAAO variants. The W209R hDAAO variant shows an improved d-serine degradation ability (higher activity and affinity for the cofactor FAD) and produces a greater decrease in cellular d/(d+l) serine ratio than the wild-type counterpart when expressed in U87 cells. The production of H2O2 as result of excessive d-serine degradation by this hDAAO variant may represent the factor affecting cell viability after stable transfection. The R199W/Q substitution in hDAAO altered the protein conformation and enzymatic activity was lost under conditions resembling the cellular ones: this resulted in an abnormal increase in cellular d-serine levels. Altogether, these results indicate that substitutions that affect hDAAO functionality directly impact on d-serine cellular levels (at least in the model cell system used). The pathological effect of the expression of the R199W hDAAO, as observed in familial ALS, originates from both protein instability and a decrease in kinetic efficiency: the increase in synaptic d-serine may be mainly responsible for the neurotoxic effect. This information is expected to drive future targeted treatments.


Assuntos
D-Aminoácido Oxidase/química , Polimorfismo de Nucleotídeo Único , Linhagem Celular Tumoral , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Cinética , Ligantes , Conformação Proteica , Relação Estrutura-Atividade , Transfecção
4.
Protein Expr Purif ; 123: 60-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27050199

RESUMO

Polyphenol oxidase from the marine bacterium Marinomonas mediterranea (MmPPOA) is a membrane-bound, blue, multi-copper laccase of 695 residues. It possesses peculiar properties that distinguish it from known laccases, such as a broad substrate specificity (common to tyrosinases) and a high redox potential. In order to push the biotechnological application of this laccase, the full-length enzyme was overexpressed in Escherichia coli cells with and without a C-terminal His-tag. The previous form, named rMmPPOA-695-His, was purified to homogeneity by HiTrap chelating chromatography following solubilization by 1% SDS in the lysis buffer with an overall yield of ≈1 mg/L fermentation broth and a specific activity of 1.34 U/mg protein on 2,6-dimethoxyphenol as substrate. A truncated enzyme form lacking 58 residues at the N-terminus encompassing the putative membrane binding region, namely rMmPPOA-637-His, was successfully expressed in E. coli as soluble protein and was purified by using the same procedure set-up as for the full-length enzyme. Elimination of the N-terminal sequence decreased the specific activity 15-fold (which was partially restored in the presence of 1 M NaCl) and altered the secondary and tertiary structures and the pH dependence of optimal stability. The recombinant rMmPPOA-695-His showed kinetic properties on catechol higher than for known laccases, a very high thermal stability, and a strong resistance to NaCl, DMSO, and Tween-80, all properties that are required for specific, targeted industrial applications.


Assuntos
Clonagem Molecular , Lacase/metabolismo , Marinomonas/enzimologia , Catecol Oxidase/química , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Catecóis/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Cinética , Lacase/química , Lacase/genética , Lignina/metabolismo , Marinomonas/química , Marinomonas/genética , Marinomonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Especificidade por Substrato , Temperatura
5.
Eur J Hum Genet ; 32(8): 920-927, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38605125

RESUMO

Copy number variants (CNVs) represent the genetic cause of about 15-20% of neurodevelopmental disorders (NDDs). We identified a ~67 kb de novo intragenic deletion on chromosome 2q22.3 in a female individual showing a developmental encephalopathy characterised by epilepsy, severe intellectual disability, speech delay, microcephaly, and thin corpus callosum with facial dysmorphisms. The microdeletion involved exons 5-6 of GTDC1, encoding a putative glycosyltransferase, whose expression is particularly enriched in the nervous system. In a previous study, a balanced de novo translocation encompassing GTDC1 was reported in a male child with global developmental delay and delayed speech and language development. Based on these premises, we explored the transcriptomic profile of our proband to evaluate the functional consequences of the novel GTDC1 de novo intragenic deletion in relation to the observed neurodevelopmental phenotype. RNA-seq on the proband's lymphoblastoid cell line (LCL) showed expression changes of glycine/serine and cytokine/chemokine signalling pathways, which are related to neurodevelopment and epileptogenesis. Subsequent analysis by ELISA (enzyme-linked immunosorbent assay) and HPLC (high-performance liquid chromatography) revealed increased levels of glycine in the proband's LCL and serum compared to matched controls. Given that an increased level of glycine has been observed in the plasma samples of individuals with Rett syndrome, a condition sharing epilepsy, microcephaly, and intellectual disability with our proband, we proposed that the GTDC1 downregulation is implicated in neurodevelopmental impairment by altering glycine metabolism. Furthermore, our findings expanded the phenotypic spectrum of the novel GTDC1-related condition, including microcephaly and epilepsy among relevant clinical features.


Assuntos
Glicina , Transtornos do Neurodesenvolvimento , Criança , Pré-Escolar , Humanos , Deleção Cromossômica , Cromossomos Humanos Par 2/genética , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patologia , Glicina/metabolismo , Glicina/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual/metabolismo , Microcefalia/genética , Microcefalia/patologia , Microcefalia/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Feminino
6.
Biol Direct ; 19(1): 11, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38268026

RESUMO

BACKGROUND: To create a dual-acting vaccine that can fight against tuberculosis, we combined antigenic arabino-mannan analogues with the Ag85B protein. To start the process, we studied the impact of modifying different parts of the Ag85B protein on its ability to be recognized by antibodies. RESULTS: Through our research, we discovered that three modified versions of the protein, rAg85B-K30R, rAg85B-K282R, and rAg85B-K30R/K282R, retained their antibody reactivity in healthy individuals and those with tuberculosis. To further test the specificity of the sugar AraMan for AraMan antibodies, we used Human Serum Albumin glycosylated with AraMan-IME and Ara3Man-IME. Our findings showed that this specific sugar was fully and specifically modified. Bio-panning experiments revealed that patients with active tuberculosis exhibited a higher antibody response to Ara3Man, a sugar found in lipoarabinomannan (LAM), which is a major component of the mycobacterial cell wall. Bio-panning with anti-LAM plates could eliminate this increased response, suggesting that the enhanced Ara3Man response was primarily driven by antibodies targeting LAM. These findings highlight the importance of Ara3Man as an immunodominant epitope in LAM and support its role in eliciting protective immunity against tuberculosis. Further studies evaluated the effects of glycosylation on the antibody affinity of recombinant Ag85B and its variants. The results indicated that rAg85B-K30R/K282R, when conjugated with Ara3Man-IME, demonstrated enhanced antibody recognition compared to unconjugated or non-glycosylated versions. CONCLUSIONS: Coupling Ara3Man to rAg85B-K30R/K282R could lead to the development of effective dual-acting vaccines against tuberculosis, stimulating protective antibodies against both AraMan and Ag85B, two key tuberculosis antigens.


Assuntos
Tuberculose , Vacinas , Humanos , Glicosilação , Tuberculose/prevenção & controle , Açúcares
7.
Microb Cell Fact ; 12: 115, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24252280

RESUMO

BACKGROUND: A number of valuable candidates as tuberculosis vaccine have been reported, some of which have already entered clinical trials. The new vaccines, especially subunit vaccines, need multiple administrations in order to maintain adequate life-long immune memory: this demands for high production levels and degree of purity. RESULTS: In this study, TB10.4, Ag85B and a TB10.4-Ag85B chimeric protein (here-after referred as full)--immunodominant antigens of Mycobacterium tuberculosis--were expressed in Escherichia coli and purified to homogeneity. The rational design of expression constructs and optimization of fermentation and purification conditions allowed a marked increase in solubility and yield of the recombinant antigens. Indeed, scaling up of the process guaranteed mass production of all these three antigens (2.5-25 mg of pure protein/L cultivation broth). Quality of produced soluble proteins was evaluated both by mass spectrometry to assess the purity of final preparations, and by circular dichroism spectroscopy to ascertain the protein conformation. Immunological tests of the different protein products demonstrated that when TB10.4 was fused to Ag85B, the chimeric protein was more immunoreactive than either of the immunogenic protein alone. CONCLUSIONS: We reached the goal of purifying large quantities of soluble antigens effective in generating immunological response against M. tuberculosis by a robust, controlled, scalable and economically feasible production process.


Assuntos
Proteínas de Bactérias/imunologia , Escherichia coli/imunologia , Mycobacterium tuberculosis/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Quimerismo , Escherichia coli/genética , Mycobacterium tuberculosis/genética
8.
Pharmaceutics ; 15(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37242563

RESUMO

Conjugation via disuccinimidyl homobifunctional linkers is reported in the literature as a convenient approach for the synthesis of glycoconjugate vaccines. However, the high tendency for hydrolysis of disuccinimidyl linkers hampers their extensive purification, which unavoidably results in side-reactions and non-pure glycoconjugates. In this paper, conjugation of 3-aminopropyl saccharides via disuccinimidyl glutarate (DSG) was exploited for the synthesis of glycoconjugates. A model protein, ribonuclease A (RNase A), was first considered to set up the conjugation strategy with mono- to tri- mannose saccharides. Through a detailed characterization of synthetized glycoconjugates, purification protocols and conjugation conditions have been revised and optimized with a dual aim: ensure high sugar-loading and avoid the presence of side reaction products. An alternative purification approach based on hydrophilic interaction liquid chromatography (HILIC) allowed the formation of glutaric acid conjugates to be avoided, and a design of experiment (DoE) approach led to optimal glycan loading. Once its suitability was proven, the developed conjugation strategy was applied to the chemical glycosylation of two recombinant antigens, native Ag85B and its variant Ag85B-dm, that are candidate carriers for the development of a novel antitubercular vaccine. Pure glycoconjugates (≥99.5%) were obtained. Altogether, the results suggest that, with an adequate protocol, conjugation via disuccinimidyl linkers can be a valuable approach to produce high sugar-loaded and well-defined glycovaccines.

10.
Microb Cell Fact ; 10: 53, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21718537

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV) is the etiological agent in AIDS and related diseases. The aspartyl protease encoded by the 5' portion of the pol gene is responsible for proteolytic processing of the gag-pol polyprotein precursor to yield the mature capsid protein and the reverse transcriptase and integrase enzymes. The HIV protease (HIV-1Pr) is considered an attractive target for designing inhibitors which could be used to tackle AIDS and therefore it is still the object of a number of investigations. RESULTS: A recombinant human immunodeficiency virus type 1 protease (HIV-1Pr) was overexpressed in Escherichia coli cells as a fusion protein with bacterial periplasmic protein dithiol oxidase (DsbA) or glutathione S-transferase (GST), also containing a six-histidine tag sequence. Protein expression was optimized by designing a suitable HIV-1Pr cDNA (for E. coli expression and to avoid autoproteolysis) and by screening six different E. coli strains and five growth media. The best expression yields were achieved in E. coli BL21-Codon Plus(DE3)-RIL host and in TB or M9 medium to which 1% (w/v) glucose was added to minimize basal expression. Among the different parameters assayed, the presence of a buffer system (based on phosphate salts) and a growth temperature of 37°C after adding IPTG played the main role in enhancing protease expression (up to 10 mg of chimeric DsbA:HIV-1Pr/L fermentation broth). GST:HIVPr was in part (50%) produced as soluble protein while the overexpressed DsbA:HIV-1Pr chimeric protein largely accumulated in inclusion bodies as unprocessed fusion protein. A simple refolding procedure was developed on HiTrap Chelating column that yielded a refolded DsbA:HIV-1Pr with a > 80% recovery. Finally, enterokinase digestion of resolubilized DsbA:HIV-1Pr gave more than 2 mg of HIV-1Pr per liter of fermentation broth with a purity ≤ 80%, while PreScission protease cleavage of soluble GST:HIVPr yielded ~ 0.15 mg of pure HIV-1Pr per liter. CONCLUSIONS: By using this optimized expression and purification procedure fairly large amounts of good-quality HIV-1Pr recombinant enzyme can be produced at the lab-scale and thus used for further biochemical studies.


Assuntos
Escherichia coli/metabolismo , Protease de HIV/biossíntese , HIV-1/enzimologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Glutationa Transferase/biossíntese , Glutationa Transferase/genética , Protease de HIV/genética , Protease de HIV/isolamento & purificação , Histidina/biossíntese , Histidina/genética , Humanos , Oligopeptídeos/biossíntese , Oligopeptídeos/genética , Isomerases de Dissulfetos de Proteínas/biossíntese , Isomerases de Dissulfetos de Proteínas/genética , Redobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
11.
J Alzheimers Dis ; 80(2): 475-492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33554911

RESUMO

Alzheimer's disease (AD), the main cause of dementia worldwide, is characterized by a complex and multifactorial etiology. In large part, excitatory neurotransmission in the central nervous system is mediated by glutamate and its receptors are involved in synaptic plasticity. The N-methyl-D-aspartate (NMDA) receptors, which require the agonist glutamate and a coagonist such as glycine or the D-enantiomer of serine for activation, play a main role here. A second D-amino acid, D-aspartate, acts as agonist of NMDA receptors. D-amino acids, present in low amounts in nature and long considered to be of bacterial origin, have distinctive functions in mammals. In recent years, alterations in physiological levels of various D-amino acids have been linked to various pathological states, ranging from chronic kidney disease to neurological disorders. Actually, the level of NMDA receptor signaling must be balanced to promote neuronal survival and prevent neurodegeneration: this signaling in AD is affected mainly by glutamate availability and modulation of the receptor's functions. Here, we report the experimental findings linking D-serine and D-aspartate, through NMDA receptor modulation, to AD and cognitive functions. Interestingly, AD progression has been also associated with the enzymes related to D-amino acid metabolism as well as with glucose and serine metabolism. Furthermore, the D-serine and D-/total serine ratio in serum have been recently proposed as biomarkers of AD progression. A greater understanding of the role of D-amino acids in excitotoxicity related to the pathogenesis of AD will facilitate novel therapeutic treatments to cure the disease and improve life expectancy.


Assuntos
Doença de Alzheimer/metabolismo , Aminoácidos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Ácido Aspártico/metabolismo , Humanos , Serina/metabolismo
12.
Transl Psychiatry ; 11(1): 77, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500383

RESUMO

D-Serine acts as a co-agonist of N-methyl-D-aspartate receptors (NMDAR) which appear overactivated in AD, while D-aspartate is a modulatory molecule acting on NMDAR as a second agonist. The aim of this work is to clarify whether the levels of these D-amino acids in serum are deregulated in AD, with the final goal to identify novel and precocious biomarkers in AD. Serum levels of L- and D-enantiomers of serine and aspartate were determined by HPLC using a pre-column derivatization procedure and a selective enzymatic degradation. Experimental data obtained from age-matched healthy subjects (HS) and AD patients were statistically evaluated by considering age, gender, and disease progression, and compared. Minor changes were apparent in the serum L- and D-aspartate levels in AD patients compared to HS. A positive correlation for the D-serine level and age was apparent in the AD cohort. Notably, the serum D-serine level and the D-/total serine ratio significantly increased with the progression of the disease. Gender seems to have a minor effect on the levels of all analytes tested. This work proposes that the serum D-serine level and D-/total serine ratio values as novel and valuable biomarkers for the progression of AD: the latter parameter allows to discriminate CDR 2 and CDR 1 patients from healthy (CDR 0) individuals.


Assuntos
Doença de Alzheimer , Aminoácidos , Ácido Aspártico , Biomarcadores , Humanos , Receptores de N-Metil-D-Aspartato , Serina
13.
BMC Biotechnol ; 10: 33, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20409334

RESUMO

BACKGROUND: Cholesterol oxidase is an alcohol dehydrogenase/oxidase flavoprotein that catalyzes the dehydrogenation of C(3)-OH of cholesterol. It has two major biotechnological applications, i.e. in the determination of serum (and food) cholesterol levels and as biocatalyst providing valuable intermediates for industrial steroid drug production. Cholesterol oxidases of type I are those containing the FAD cofactor tightly but not covalently bound to the protein moiety, whereas type II members contain covalently bound FAD. This is the first report on the over-expression in Escherichia coli of type II cholesterol oxidase from Brevibacterium sterolicum (BCO). RESULTS: Design of the plasmid construct encoding the mature BCO, optimization of medium composition and identification of the best cultivation/induction conditions for growing and expressing the active protein in recombinant E. coli cells, concurred to achieve a valuable improvement: BCO volumetric productivity was increased from approximately 500 up to approximately 25000 U/L and its crude extract specific activity from 0.5 up to 7.0 U/mg protein. Interestingly, under optimal expression conditions, nearly 55% of the soluble recombinant BCO is produced as covalently FAD bound form, whereas the protein containing non-covalently bound FAD is preferentially accumulated in insoluble inclusion bodies. CONCLUSIONS: Comparison of our results with those published on non-covalent (type I) COs expressed in recombinant form (either in E. coli or Streptomyces spp.), shows that the fully active type II BCO can be produced in E. coli at valuable expression levels. The improved over-production of the FAD-bound cholesterol oxidase will support its development as a novel biotool to be exploited in biotechnological applications.


Assuntos
Brevibacterium/enzimologia , Colesterol Oxidase/biossíntese , Escherichia coli/metabolismo , Sequência de Aminoácidos , Reatores Biológicos , Colesterol Oxidase/isolamento & purificação , Clonagem Molecular , Meios de Cultura , DNA Complementar , Flavina-Adenina Dinucleotídeo/metabolismo , Dados de Sequência Molecular , Plasmídeos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
14.
Protein Sci ; 17(3): 409-19, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18218720

RESUMO

The flavoprotein cholesterol oxidase (CO) from Brevibacterium sterolicum is a monomeric flavoenzyme containing one molecule of FAD cofactor covalently linked to His69. The elimination of the covalent link following the His69Ala substitution was demonstrated to result in a significant decrease in activity, in the midpoint redox potential of the flavin, and in stability with respect to the wild-type enzyme, but does not modify the overall structure of the enzyme. We used CO as a model system to dissect the changes due to the elimination of the covalent link between the flavin and the protein (by comparing the wild-type and H69A CO holoproteins) with those due to the elimination of the cofactor (by comparing the holo- and apoprotein forms of H69A CO). The apoprotein of H69A CO lacks the characteristic tertiary structure of the holoprotein and displays larger hydrophobic surfaces; its urea-induced unfolding does not occur by a simple two-state mechanism and is largely nonreversible. Minor alterations in the flavin binding region are evident between the native and the refolded proteins, and are likely responsible for the low refolding yield observed. A model for the equilibrium unfolding of H69A CO that also takes into consideration the effects of cofactor binding and dissociation, and thus may be of general significance in terms of the relationships between cofactor uptake and folding in flavoproteins, is presented.


Assuntos
Colesterol Oxidase/química , Flavina-Adenina Dinucleotídeo/química , Apoenzimas/química , Brevibacterium/enzimologia , Calorimetria , Colesterol Oxidase/genética , Estabilidade Enzimática , Histidina/genética , Mutagênese Sítio-Dirigida , Desnaturação Proteica , Dobramento de Proteína , Espectrometria de Fluorescência , Temperatura
15.
Front Mol Biosci ; 5: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29417050

RESUMO

pLG72 is a small, primate-specific protein of 153 amino acids. It is the product of the G72 gene, expressed in testis, spinal cord, and brain. The presence of G72 transcript and pLG72 has recurrently been called into question, however G72 mRNA and pLG72 protein levels were higher in blood and brain of patients with schizophrenia than in healthy controls. On the one hand, the SNP rs2391191 corresponding to the R30K substitution in pLG72 was genetically linked to schizophrenia, reduced thickness of the brain cortex in schizophrenia-affected individuals, and altered memory function. Various lines of evidence indicated that pLG72 is a mitochondrial protein, specifically an extrinsic protein bound on the outer membrane. Over the years, pLG72 was proposed to be involved in different functions: (a) overexpression induces mitochondria fragmentation, increasing the numbers of shorter and more mobile ones which could be delivered faster to regions of intense growth and facilitating the dendritic complexity; (b) it might induce oxidative stress by interacting with methionine-R-sulfoxide reductase B2; and (c) it binds and modulates the activity of FMN-containing oxidoreductase of the respiratory complex I. The main role of this protein, however, is related to its binding to the human flavoenzyme D-amino acid oxidase (hDAAO), i.e., the main catabolic enzyme for D-enantiomer of serine. This D-amino acid is a main endogenous coagonist of the N-methyl-D-aspartate type glutamate receptor (NMDAR) involved in main functions such as synaptic plasticity, learning, memory, and excitotoxicity. For this work, we reviewed the recent literature concerning the hDAAO-pLG72 interaction, focusing on the molecular details of the interaction, the effect of hDAAO function and stability, and the cellular effects, especially on D-serine concentration. The main effects related to the pathological R30K substitution are also reported. We have highlighted the gaps in our knowledge of this human protein as well as the relevance of clarifying the molecular details of hDAAO-pLG72 interaction in order to design molecules to modulate hDAAO activity/stability and thus NMDAR function acting at the D-serine cellular level.

16.
J Pharm Biomed Anal ; 157: 10-19, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29754038

RESUMO

One of the most popular enzymes used for the in vitro cleavage of fusion proteins is enterokinase (EK, E.C. 3.4.21.9). EK cleaves with high specificity after the sequence Asp4-Lys (DDDDK), which allows the fusion protein to preserve its native amino acid terminus without any additional unwanted cleavage residue from the recognition sequence. However, the complete removal of EK after protein cleavage is a critical step to ensure protein identity and stability. As enzyme immobilization increases stability and reusability of the biocatalyst while reducing operating costs and sample contamination, in this work we report the covalent immobilization of recombinant EK (rEK) on monolithic chromatographic supports with different binding chemistries for the development of a rEK-chromatographic-bioreactor. An on-line assay for the determination of the activity of the immobilized rEK was set up using a synthetic substrate (Gly-Asp4-Lys-ß-naphthylamide, GD4K-NA). The assay was used to study the improvement of the operational conditions (temperature and flow rate) on hydrolytic activity of the bioreactor. The immobilization yields, as well as the cleavage activity of immobilized rEK on GD4K-NA, were highly satisfactory when the immobilized enzyme reactor was used in recirculation. The ability of the immobilized rEK to cleave fusion proteins was tested by recirculation of thioredoxin (Trx)-TB10.4 and Trx-Ag85B His-tagged proteins yielding the mature antigens TB10.4 and Ag85B, to be used in the preparation of potential novel glycovaccines against tuberculosis. The prepared rEK-based immobilized enzyme reactors proved to efficiently cleave the considered fusion proteins even if the cleavage specificity at the canonical site was not fully achieved. The immobilized rEK showed very good stability and reusability.


Assuntos
Biofarmácia/métodos , Enteropeptidase/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Reatores Biológicos , Enzimas Imobilizadas/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo
17.
RSC Adv ; 8(41): 23171-23180, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35540174

RESUMO

Tuberculosis is the deadliest infectious disease in the world. The variable efficacy of the current treatments highlights the need for more effective agents against this disease. In the past few years, we focused on the investigation of antigenic glycoconjugates starting from recombinant Ag85B (rAg85B), a potent protein antigen from Mycobacterium tuberculosis. In this paper, structural modifications were rationally designed in order to obtain a rAg85B variant protein able to maintain its immunogenicity after glycosylation. Lysine residues involved in the main T-epitope sequences (namely, K30 and K282) have been substituted with arginine to prevent their glycosylation by a lysine-specific reactive linker. The effectiveness of the mutation strategy and the detailed structure of resulting neo-glycoconjugates have been studied by intact mass spectrometry, followed by peptide and glycopeptide mapping. The effect of K30R and K282R mutations on the T-cell activity of rAg85B has also been investigated with a preliminary immunological evaluation performed by enzyme-linked immunospotting on the different variant proteins and their glycosylation products. After glycosylation, the two variant proteins with an arginine in position 30 completely retain the original T-cell activity, thus representing adequate antigenic carriers for the development of efficient glycoconjugate vaccines against tuberculosis.

18.
Curr Protein Pept Sci ; 8(6): 600-18, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18220846

RESUMO

D-amino acid oxidase (DAAO) is a FAD-containing flavoprotein that dehydrogenates the D-isomer of amino acids to the corresponding imino acids, coupled with the reduction of FAD. The cofactor then reoxidizes on molecular oxygen and the imino acid hydrolyzes spontaneously to the alpha-keto acid and ammonia. In vitro DAAO displays broad substrate specificity, acting on several neutral and basic D-amino acids: the most efficient substrates are amino acids with hydrophobic side chains. D-aspartic acid and D-glutamic acid are not substrates for DAAO. Through the years, it has been the subject of a number of structural, functional and kinetic investigations. The most recent advances are represented by site-directed mutagenesis studies and resolution of the 3D-structure of the enzymes from pig, human and yeast. The two approaches have given us a deeper understanding of the structure-function relationships and promoted a number of investigations aimed at the modulating the protein properties. By a rational and/or a directed evolution approach, DAAO variants with altered substrate specificity (e.g., active on acidic or on all D-amino acids), increased stability (e.g., stable up to 60 degrees C), modified interaction with the flavin cofactor, and altered oligomeric state were produced. The aim of this paper is to provide an overview of the most recent research on the engineering of DAAOs to illustrate their new intriguing properties, which also have enabled us to pursue new biotechnological applications.


Assuntos
D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/metabolismo , Evolução Molecular Direcionada/métodos , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Animais , D-Aminoácido Oxidase/genética , Estabilidade Enzimática , Humanos , Dados de Sequência Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Biochimie ; 89(3): 360-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17145127

RESUMO

D-amino acid oxidase (DAAO) is a flavoprotein that catalyzes stereospecifically the oxidative deamination of D-amino acids. The wild-type DAAO is mainly active on neutral D-amino acids, while basic D-amino acids are poor substrates and the acidic ones are virtually not oxidized. To present a comprehensive picture of how the active site residues can modulate the substrate specificity a number of mutants at position M213, Y223, Y238, R285, S335, and Q339 were prepared in the enzyme from the yeast Rhodotorula gracilis. All DAAO mutants have spectral properties similar to those of the wild-type enzyme and are catalytically active, thus excluding an essential role in catalysis; a lower activity on neutral and basic amino acids was observed. Interestingly, an increase in activity and (k(cat)/K(m))(app) ratio on D-aspartate was observed for all the mutants containing an additional charged residue in the active site. The active site of yeast DAAO appears to be a highly evolved scaffold built up through evolution to optimize the oxidative deamination of neutral D-amino acids without limiting its substrate specificity. It is noteworthy, that introduction of a sole, additional, positively charged residue in the active site is sufficient to optimize the reactivity on acidic D-amino acids, giving rise to kinetic properties similar to those of D-aspartate oxidase.


Assuntos
D-Aminoácido Oxidase/metabolismo , Rhodotorula/enzimologia , Substituição de Aminoácidos , Sítios de Ligação/genética , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Ligação Proteica , Rhodotorula/genética , Espectrofotometria/métodos , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
20.
Front Mol Biosci ; 4: 102, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29404340

RESUMO

D-amino acid oxidase (DAAO) is a well-known flavoenzyme that catalyzes the oxidative FAD-dependent deamination of D-amino acids. As a result of the absolute stereoselectivity and broad substrate specificity, microbial DAAOs have been employed as industrial biocatalysts in the production of semi-synthetic cephalosporins and enantiomerically pure amino acids. Moreover, in mammals, DAAO is present in specific brain areas and degrades D-serine, an endogenous coagonist of the N-methyl-D-aspartate receptors (NMDARs). Dysregulation of D-serine metabolism due to an altered DAAO functionality is related to pathological NMDARs dysfunctions such as in amyotrophic lateral sclerosis and schizophrenia. In this protocol paper, we describe a variety of direct assays based on the determination of molecular oxygen consumption, reduction of alternative electron acceptors, or α-keto acid production, of coupled assays to detect the hydrogen peroxide or the ammonium production, and an indirect assay of the α-keto acid production based on a chemical derivatization. These analytical assays allow the determination of DAAO activity both on recombinant enzyme preparations, in cells, and in tissue samples.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa