Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(3): 1236-1248, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34990121

RESUMO

Oxidative addition of 1.5 equiv of bromine or iodine to a Ir(I) sulfoxide pincer complex affords the corresponding Ir(IV) tris-bromido or tris-iodido complexes, respectively. The unprecedented trap-free reductive elimination of iodine from the Ir(IV)-iodido complex is induced by coordination of ligands or donor solvents. In the case of added I-, the isostructural tris-iodo Ir(III)-ate complex is quickly generated, which then can be readily reoxidized to the Ir(IV)-iodido complex with FcPF6 or electrochemically. DFT calculations indicate an "inverted ligand field" in the Ir(IV) complexes and favor dinuclear pathways for the reductive elimination of iodine from the formal d5 metal center.

2.
J Am Chem Soc ; 143(48): 20157-20165, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34841864

RESUMO

The synthesis of N-heterocycles is of paramount importance for the pharmaceutical industry. They are often synthesized through atom economic and environmentally unfriendly methods, generating significant waste. A less explored, but greener, alternative is the synthesis through the direct intramolecular C-H amination utilizing organic azides. Few examples exist by using this method, but many are limited due to the required use of stoichiometric amounts of Boc2O. Herein, we report a homoleptic C,O-chelating mesoionic carbene-iron complex, which is the first iron-based complex that does not require the addition of any protecting groups for this transformation and that is active also in strong donor solvents such as THF or even DMSO. The achieved turnover number is an order of magnitude higher than any other reported catalytic system. A variety of C-H bonds were activated, including benzylic, primary, secondary, and tertiary. By following the reaction over time, we determined the presence of an initiation period. Kinetic studies showed a first-order dependence on substrate concentration and half-order dependence on catalyst concentration. Intermolecular competition reactions with deuterated substrate showed no KIE, while separate reactions with deuterium-labeled substrate resulted in a KIE of 2.0. Moreover, utilizing deuterated substrate significantly decreased the initiation period of the catalysis. Preliminary mechanistic studies suggest a unique mechanism involving a dimeric iron species as the catalyst resting state.

3.
Chemistry ; 27(60): 14936-14946, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34424579

RESUMO

Reactions of di-tert-butyldiphosphatetrahedrane (1) with cycloocta-1,5-diene- or anthracene-stabilised metalate anions of iron and cobalt consistently afford complexes of the rarely encountered 1,2-diphosphacyclobutadiene ligand, which have previously been very challenging synthetic targets. The subsequent reactivity of 1,2-diphosphacyclobutadiene cobaltates toward various electrophiles has also been investigated and is compared to reactions of related 1,3-diphosphacyclobutadiene complexes. The results highlight the distinct reactivity of such isomeric species, showing that the 1,2-isomers can act as precursors for previously unknown triphospholium ligands. The electronic structures of the new complexes were investigated by several methods, including NMR, EPR and Mößbauer spectroscopies as well as quantum chemical calculations.


Assuntos
Cobalto , Cristalografia por Raios X , Ligantes , Estrutura Molecular , Espectroscopia de Mossbauer
4.
Inorg Chem ; 60(21): 16455-16465, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34677061

RESUMO

The synthesis of a tripodal, S-based ligand, namely the mesitylene-anchored, tris-thiophenolate-functionalized (mes(Me,AdArS)3)3- (1)3-, and its coordination chemistry with low-valent uranium to form [UIII((SArAd,Me)3mes)] (1-U) are reported. Single-crystal X-ray diffraction analysis reveals a C3-symmetric molecular structure. Full characterization of 1-U was performed using nuclear magnetic resonance, UV-vis-NIR electronic absorption, and electron paramagnetic resonance spectroscopies as well as SQUID magnetometry, thus confirming the U(III) oxidation state. Alternating current magnetic studies show that 1-U exhibits single-molecule magnet behavior at low temperatures in a non-zero external field. Comparison of these results to those of the previously reported mesitylene-anchored complexes, [UIII((OArAd,Me)3mes)] and [UIII((OArtBu,tBu)3mes)], indicates a drastic change in the electronic structure when moving from phenolate-based ligands to thiophenolate-based 1, which is further discussed by means of computational analysis (NBO, DFT, and QTAIM). Despite the U-O bonds being stronger, a much higher covalency was found for the U-S analogue.

5.
Angew Chem Int Ed Engl ; 60(7): 3515-3518, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33112017

RESUMO

Addition of the bipyridyl-embedded cycloparaphenylene nanohoop bipy[9]CPP to [Fe{H2 B(pyz)2 }] (pyz=pyrazolyl) produces the distorted octahedral complex [Fe(bipy[9]CPP){H2 B(pyz)2 }2 ] (1). The molecular structure of 1 shows that the nanohoop ligand contains a non-planar bipy unit. Magnetic susceptibility measurements indicate spin-crossover (SCO) behaviour with a T1/2 of 130 K, lower than that of 160 K observed with the related compound [Fe(bipy){H2 B(pyz)2 }2 ] (2), which contains a conventional bipy ligand. A computational study of 1 and 2 reveals that the curvature of the nanohoop leads to the different SCO properties, suggesting that the SCO behaviour of iron(II) can be tuned by varying the size and diameter of the nanohoop.

6.
Inorg Chem ; 59(24): 17834-17850, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33258366

RESUMO

A high-spin, mononuclear TiII complex, [(TptBu,Me)TiCl] [TptBu,Me- = hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borate], confined to a tetrahedral ligand-field environment, has been prepared by reduction of the precursor [(TptBu,Me)TiCl2] with KC8. Complex [(TptBu,Me)TiCl] has a 3A2 ground state (assuming C3v symmetry based on structural studies), established via a combination of high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy, solution and solid-state magnetic studies, Ti K-edge X-ray absorption spectroscopy (XAS), and both density functional theory and ab initio (complete-active-space self-consistent-field, CASSCF) calculations. The formally and physically defined TiII complex readily binds tetrahydrofuran (THF) to form the paramagnetic adduct [(TptBu,Me)TiCl(THF)], which is impervious to N2 binding. However, in the absence of THF, the TiII complex captures N2 to produce the diamagnetic complex [(TptBu,Me)TiCl]2(η1,η1;µ2-N2), with a linear Ti═N═N═Ti topology, established by single-crystal X-ray diffraction. The N2 complex was characterized using XAS as well as IR and Raman spectroscopies, thus establishing this complex to possess two TiIII centers covalently bridged by an N22- unit. A π acid such as CNAd (Ad = 1-adamantyl) coordinates to [(TptBu,Me)TiCl] without inducing spin pairing of the d electrons, thereby forming a unique high-spin and five-coordinate TiII complex, namely, [(TptBu,Me)TiCl(CNAd)]. The reducing power of the coordinatively unsaturated TiII-containing [(ΤptBu,Me)TiCl] species, quantified by electrochemistry, provides access to a family of mononuclear TiIV complexes of the type [(TptBu,Me)Ti═E(Cl)] (with E2- = NSiMe3, N2CPh2, O, and NH) by virtue of atom- or group-transfer reactions using various small molecules such as N3SiMe3, N2CPh2, N2O, and the bicyclic amine 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene.

7.
Chem Sci ; 13(29): 8634-8641, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35974753

RESUMO

Using the potentially tridentate N,N'-bis(N-heterocyclic silylene)pyridine [SiNSi] pincer-type ligand, 2,6-N,N'-diethyl-bis[N,N'-di-tert-butyl(phenylamidinato)silylene] diaminopyridine, led to the first isolable bis(silylene)pyridine-stabilized manganese(0) complex, {κ3-[SiNSi]Mn(dmpe)} 4 (dmpe = (Me2P)2C2H4), which represents an isolobal 17 VE analogue of the elusive Mn(CO)5 radical. The compound is accessible through the reductive dehalogenation of the corresponding dihalido (SiNSi)Mn(ii) complexes 1 (Cl) and 2 (Br) with potassium graphite. Exposing 4 towards the stronger π-acceptor ligands CO and 2,6-dimethylphenyl isocyanide afforded the related Mn(0) complexes κ2-[SiNSi]Mn(CO)3 (5) and κ3-[SiNSi]Mn(CNXylyl)2(κ1-dmpe) (6), respectively. Remarkably, the stabilization of Mn(0) in the coordination sphere of the [SiNSi] ligand favors the d7 low-spin electronic configuration, as suggested by EPR spectroscopy, SQUID measurements and DFT calculations. The suitability of 4 acting as a superior pre-catalyst in regioselective hydroboration of quinolines has also been demonstrated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa