Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 689: 115503, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453049

RESUMO

Terpenes play a vital role in plant defense; tomato plants produce a diverse range of terpenes within specialized glandular trichomes, influencing interactions with herbivores, predators, and pollinators. This study employed two distinct methods, namely leaf dip and maceration, to extract trichomes from tomato leaves. Terpene quantification was carried out using Gas Chromatography-Mass Spectrometry (GC-MS). The leaf dip method proved effective in selectively targeting trichome content, revealing unique extraction patterns compared to maceration. The GC-MS method demonstrated high linearity, accuracy, sensitivity, and low limits of detection and quantification. Application of the method to different tomato species (Solanum pennellii, Solanum pimpinellifolium, Solanum galapagense, Solanum habrochaites, and Solanum lycopersicum) identified significant variation in terpene content among these species, highlighting the potential of specific accessions for breeding programs. Notably, the terpene α-zingiberene, known for its repellency against whiteflies, was found in high quantities (211.90-9155.13 µg g-1) in Solanum habrochaites accession PI209978. These findings provide valuable insights into terpenoid diversity for plant defense mechanisms, guiding future research on developing pest-resistant tomato cultivars. Additionally, the study underscores the broader applications of terpenes in agriculture.


Assuntos
Solanum lycopersicum , Solanum , Terpenos/análise , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais
2.
Food Chem ; 407: 135101, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481474

RESUMO

Growers commonly wash fresh produce with chemical sanitizers during postharvest handling. However, these sanitizers can be harsh to washing systems and pose a health risk to workers. Essential oils (EOs) can be used as alternatives to chemical sanitizers in produce washing. Previous studies reveal that the EOs from thyme, oregano, cinnamon, and clove are the main EOs evaluated in the studies as potential sanitizers for the washing of produce. The use of EOs and surfactants, such as tween80 and cetylpyridinium chloride, might be used to improve the antimicrobial activity of emulsions. However, studies are still required to evaluate the potential effect of different chemical components of EOs and preparations. Also, it is recommended that researchers focus on overcoming obstacles regarding EOs application in washing systems, including the high levels of EO required to reduce bacterial growth, undesired organoleptic impact on produce, and the poor solubility of EOs in aqueous solution.


Assuntos
Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Tensoativos , Testes de Sensibilidade Microbiana
3.
J Mass Spectrom ; 58(1): e4900, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36688359

RESUMO

Sweet almond oil is a raw material with high-added value used in different products. Then, the aim of this study is to evaluate the quality and purity of 10 body oils based on sweet almond oils currently available in the Brazilian market. Fatty acid composition and triacylglycerol (TAG) profile were determined by gas chromatography with flame ionization detector (GC-FID) and atmospheric solids analysis probe mass spectrometry (ASAP-MS), respectively. The authenticity of samples was assessed using an analytical curve equation. Soybean oil was chosen as the adulterant because it is the cheapest vegetable oil commercialized in Brazil. Hierarchical clustering analysis (HCA) in conjunction with ASAP-MS classified product samples according to the type of vegetable oil (soybean and sweet almond oils). The addition of soybean oil (8.79% to 99.70%) was confirmed in samples. However, only two samples stated in their label the presence of soybean oil as an ingredient. These findings highlight the need for better oversight by regulatory bodies to ensure that consumers acquire high quality and authentic products based on equally high quality and purity of sweet almond oils.


Assuntos
Óleos de Plantas , Óleo de Soja , Óleo de Soja/análise , Brasil , Cromatografia Gasosa-Espectrometria de Massas , Óleos de Plantas/química , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa