Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Mol Life Sci ; 79(8): 448, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35876901

RESUMO

The RS1 gene on Xp 22.13 encodes retinoschisin which is known to directly interact with the retinal Na/K-ATPase at the photoreceptor inner segments. Pathologic mutations in RS1 cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy in young males. To further delineate the retinoschisin-Na/K-ATPase complex, co-immunoprecipitation was performed with porcine and murine retinal lysates targeting the ATP1A3 subunit. This identified the voltage-gated potassium (Kv) channel subunits Kv2.1 and Kv8.2 as direct interaction partners of the retinal Na/K-ATPase. Colocalization of the individual components of the complex was demonstrated at the membrane of photoreceptor inner segments. We further show that retinoschisin-deficiency, a frequent consequence of molecular pathology in XLRS, causes mislocalization of the macromolecular complex during postnatal retinal development with a simultaneous reduction of Kv2.1 and Kv8.2 protein expression, while the level of retinal Na/K-ATPase expression remains unaffected. Patch-clamp analysis revealed no effect of retinoschisin-deficiency on Kv channel mediated potassium ion currents in vitro. Together, our data suggest that Kv2.1 and Kv8.2 together with retinoschisin and the retinal Na/K-ATPase are integral parts of a macromolecular complex at the photoreceptor inner segments. Defective compartmentalization of this complex due to retinoschisin-deficiency may be a crucial step in initial XLRS pathogenesis.


Assuntos
Proteínas do Olho , Retinosquise , Animais , Proteínas do Olho/genética , Masculino , Mamíferos/metabolismo , Camundongos , Células Fotorreceptoras/metabolismo , Potássio/metabolismo , Retinosquise/genética , Retinosquise/metabolismo , Retinosquise/patologia , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
2.
Exp Eye Res ; 177: 23-34, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30040949

RESUMO

Mutations in the RS1 gene encoding retinoschisin cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy in males. While most of the XLRS associated mutations strongly interfere with cellular secretion, this is not true for mutants RS1-F108C, -R141G, -R141H, -R182C, -H207Q and -R209H. Native retinoschisin builds double-octamers and binds to retinal membranes, interacting with the retinal Na/K-ATPase. Functionally, it regulates MAP kinase signaling and Na/K-ATPase localization, and hampers photoreceptor degeneration. In this study, we investigated the capacity of the retinoschisin mutants still secreted extracellularly to fulfil these tasks. We addressed secretion and oligomerization of the heterologously expressed mutants as well as their binding to recombinant retinal Na/K-ATPases and murine retinoschisin-deficient (Rs1h-/Y) retinal and non-retinal explants. This has refined the categorization of secreted retinoschisin mutants: (i) no octamerization, unspecific membrane binding (RS1-F108C and -R182C), (ii) double-octamerization but no membrane binding (RS1-R141H), and (iii) double-octamerization and unspecific membrane binding (RS1-R141G, -H207Q, and -R209H). Notably, selected mutants of all categories (RS1-F108C, -R141H, and -R209H) failed to regulate retinal MAP kinase signaling and Na/K-ATPase localization in Rs1h-/Y retinal explants, and could not attenuate photoreceptor degeneration. Bioinformatic modeling of the secreted mutants depicted prominent alterations in the spatial and temporal conformation of a substructure called "spike 3" and its vicinity, implying a crucial role of this substructure for binding capacity and specificity. Taken together, our data point to a pathomechanism for secreted retinoschisin mutants, specifically to disturbances of the retinoschisin interface accompanied by unphysiological membrane interactions and impaired regulatory functions.


Assuntos
Moléculas de Adesão Celular/fisiologia , Proteínas do Olho/metabolismo , Mutação , Retinosquise , Animais , Transporte Biológico , Moléculas de Adesão Celular/genética , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Células HEK293 , Humanos , Camundongos , Retina/metabolismo , Retinosquise/genética , Retinosquise/metabolismo , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
J Cell Mol Med ; 21(4): 768-780, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27995734

RESUMO

X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy in young males, caused by mutations in the RS1 gene. The function of the encoded protein, termed retinoschisin, and the molecular mechanisms underlying XLRS pathogenesis are still unresolved, although a direct interaction partner of the secreted retinoschisin, the retinal Na/K-ATPase, was recently identified. Earlier gene expression studies in retinoschisin-deficient (Rs1h-/Y ) mice provided a first indication of pathological up-regulation of mitogen-activated protein (MAP) kinase signalling in disease pathogenesis. To further investigate the role for retinoschisin in MAP kinase regulation, we exposed Y-79 cells and murine Rs1h-/Y retinae to recombinant retinoschisin and the XLRS-associated mutant RS1-C59S. Although normal retinoschisin stably bound to retinal cells, RS1-C59S exhibited a strongly reduced binding affinity. Simultaneously, exposure to normal retinoschisin significantly reduced phosphorylation of C-RAF and MAP kinases ERK1/2 in Y-79 cells and murine Rs1h-/Y retinae. Expression of MAP kinase target genes C-FOS and EGR1 was also down-regulated in both model systems. Finally, retinoschisin treatment decreased pro-apoptotic BAX-2 transcript levels in Y-79 cells and Rs1h-/Y retinae. Upon retinoschisin treatment, these cells showed increased resistance against apoptosis, reflected by decreased caspase-3 activity (in Y-79 cells) and increased photoreceptor survival (in Rs1h-/Y retinal explants). RS1-C59S did not influence C-RAF or ERK1/2 activation, C-FOS or EGR1 expression, or apoptosis. Our data imply that retinoschisin is a novel regulator of MAP kinase signalling and exerts an anti-apoptotic effect on retinal cells. We therefore discuss that disturbances of MAP kinase signalling by retinoschisin deficiency could be an initial step in XLRS pathogenesis.


Assuntos
Apoptose , Moléculas de Adesão Celular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas do Olho/metabolismo , Sistema de Sinalização das MAP Quinases , Retina/enzimologia , Retina/patologia , Retinosquise/enzimologia , Retinosquise/patologia , Animais , Moléculas de Adesão Celular/deficiência , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Ligação Proteica
4.
Hum Mol Genet ; 24(22): 6361-73, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26310622

RESUMO

High-temperature requirement A1 (HTRA1) is a secreted serine protease reported to play a role in the development of several cancers and neurodegenerative diseases. Still, the mechanism underlying the disease processes largely remains undetermined. In age-related macular degeneration (AMD), a common cause of vision impairment and blindness in industrialized societies, two synonymous polymorphisms (rs1049331:C>T, and rs2293870:G>T) in exon 1 of the HTRA1 gene were associated with a high risk to develop disease. Here, we show that the two polymorphisms result in a protein with altered thermophoretic properties upon heat-induced unfolding, trypsin accessibility and secretion behavior, suggesting unique structural features of the AMD-risk-associated HTRA1 protein. Applying MicroScale Thermophoresis and protease digestion analysis, we demonstrate direct binding and proteolysis of transforming growth factor ß1 (TGF-ß1) by normal HTRA1 but not the AMD-risk-associated isoform. As a consequence, both HTRA1 isoforms strongly differed in their ability to control TGF-ß mediated signaling, as revealed by reporter assays targeting the TGF-ß1-induced serpin peptidase inhibitor (SERPINE1, alias PAI-1) promoter. In addition, structurally altered HTRA1 led to an impaired autocrine TGF-ß signaling in microglia, as measured by a strong down-regulation of downstream effectors of the TGF-ß cascade such as phosphorylated SMAD2 and PAI-1 expression. Taken together, our findings demonstrate the effects of two synonymous HTRA1 variants on protein structure and protein interaction with TGF-ß1. As a consequence, this leads to an impairment of TGF-ß signaling and microglial regulation. Functional implications of the altered properties on AMD pathogenesis remain to be clarified.


Assuntos
Degeneração Macular/genética , Degeneração Macular/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Mutação Silenciosa , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Baixo , Éxons , Predisposição Genética para Doença , Células HEK293 , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Degeneração Macular/enzimologia , Inibidor 1 de Ativador de Plasminogênio/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Fatores de Risco , Transdução de Sinais
5.
Front Immunol ; 14: 1147037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936905

RESUMO

Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.


Assuntos
Degeneração Macular , Drusas do Disco Óptico , Humanos , Degeneração Macular/genética , Retina/patologia , Drusas do Disco Óptico/patologia , Inflamação/patologia
6.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398366

RESUMO

The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of exosomes that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral exosomes from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of exosome release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in exosome content, including basal-side specific desmosome and hemidesmosome shedding via exosomes. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases, (e.g., AMD) and broadly from blood-CNS barriers in other neurodegenerative diseases.

7.
J Extracell Biol ; 2(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38108061

RESUMO

The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles (EVs) from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of small EVs (sEVs) including exosomes, that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral sEVs from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of sEV release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in sEV content, including basal-side specific desmosome and hemidesmosome shedding via sEVs. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases (e.g., AMD).

8.
Med Genet ; 33(3): 221-227, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38835692

RESUMO

The human retina is a highly structured and complex neurosensory tissue central to perceiving and processing visual signals. In a healthy individual, the close interplay between the neuronal retina, the adjacent retinal pigment epithelium and the underlying blood supply, the choriocapillaris, is critical for maintaining eyesight over a lifetime. An impairment of this delicate and metabolically highly active system, caused by genetic alteration, environmental impact or both, results in a multitude of pathological phenotypes of the retina. Understanding and treating these disease processes are motivated by a marked medical need in young as well as in older patients. While naturally occurring or gene-manipulated animal models have been used successfully in ophthalmological research for many years, recent advances in induced pluripotent stem cell technology have opened up new avenues to generate patient-derived retinal model systems. Here, we explore to what extent these cellular models can be useful to mirror human pathologies in vitro ultimately allowing to analyze disease mechanisms and testing treatment options in the cell type of interest on an individual patient-specific genetic background.

9.
Invest Ophthalmol Vis Sci ; 61(14): 2, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259607

RESUMO

Purpose: Vitronectin, a cell adhesion and spreading factor, is suspected to play a role in the pathogenesis of age-related macular degeneration (AMD), as it is a major component of AMD-specific extracellular deposits (e.g., soft drusen, subretinal drusenoid deposits). The present study addressed the impact of AMD-associated non-synonymous variant rs704 in the vitronectin-encoding gene VTN on vitronectin functionality. Methods: Effects of rs704 on vitronectin expression and processing were analyzed by semi-quantitative sequencing of VTN transcripts from retinal pigment epithelium (RPE) cells generated from human induced pluripotent stem cells (hiPSCs) and from human neural retina, as well as by western blot analyses on heterologously expressed vitronectin isoforms. Binding of vitronectin isoforms to retinal and endothelial cells was analyzed by western blot. Immunofluorescence staining followed extracellular matrix (ECM) deposition in cultured RPE cells heterologously expressing the vitronectin isoforms. Adhesion of fluorescently labeled RPE or endothelial cells in dependence of recombinant vitronectin or vitronectin-containing ECM was investigated fluorometrically or microscopically. Tube formation and migration assays addressed effects of vitronectin on angiogenesis-related processes. Results: Variant rs704 affected expression, secretion, and processing but not oligomerization of vitronectin. Cell binding and influence on RPE-mediated ECM deposition differed between AMD-risk-associated and non-AMD-risk-associated protein isoforms. Finally, vitronectin affected adhesion and endothelial tube formation. Conclusions: The AMD-risk-associated vitronectin isoform exhibits increased expression and altered functionality in cellular processes related to the sub-RPE aspects of AMD pathology. Although further research is required to address the subretinal disease aspects, this initial study supports an involvement of vitronectin in AMD pathogenesis.


Assuntos
Degeneração Macular/genética , Vitronectina/genética , Western Blotting , Encapsulamento de Células , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Matriz Extracelular/metabolismo , Imunofluorescência , Variação Genética/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Degeneração Macular/patologia , Isoformas de Proteínas , Proteínas Recombinantes , Retina/citologia , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Vitronectina/metabolismo
10.
Invest Ophthalmol Vis Sci ; 61(5): 1, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32392309

RESUMO

Purpose: Mutations in the RS1 gene, which encodes retinoschisin, cause X-linked juvenile retinoschisis, a retinal dystrophy in males. Retinoschisin specifically interacts with the retinal sodium-potassium adenosine triphosphatase (Na/K-ATPase), a transmembrane ion pump. Na/K-ATPases also bind cardiac glycosides, which control the activity of the pump and have been linked to disturbances in retinal homeostasis. In this study, we investigated the crosstalk between retinoschisin and cardiac glycosides at the retinal Na/K-ATPase and the consequences of this interplay on retinal integrity. Methods: The effect of cardiac glycosides (ouabain and digoxin) on the binding of retinoschisin to the retinal Na/K-ATPase was investigated via western blot and immunocytochemistry. Also, the influence of retinoschisin on the binding of cardiac glycosides was analyzed via enzymatic assays, which quantified cardiac glycoside-sensitive Na/K-ATPase pump activity. Moreover, retinoschisin-dependent binding of tritium-labeled ouabain to the Na/K-ATPase was determined. Finally, a reciprocal effect of retinoschisin and cardiac glycosides on Na/K-ATPase localization and photoreceptor degeneration was addressed using immunohistochemistry in retinoschisin-deficient murine retinal explants. Results: Cardiac glycosides displaced retinoschisin from the retinal Na/K-ATPase; however, retinoschisin did not affect cardiac glycoside binding. Notably, cardiac glycosides reduced the capacity of retinoschisin to regulate Na/K-ATPase localization and to protect against photoreceptor degeneration. Conclusions: Our findings reveal opposing effects of retinoschisin and cardiac glycosides on retinal Na/K-ATPase binding and on retinal integrity, suggesting that a fine-tuned interplay between both components is required to maintain retinal homeostasis. This observation provides new insight into the mechanisms underlying the pathological effects of cardiac glycoside treatment on retinal integrity.


Assuntos
Digoxina/metabolismo , Proteínas do Olho/metabolismo , Ouabaína/metabolismo , Retinosquise/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Ligação Proteica , Transdução de Sinais
11.
PLoS One ; 14(5): e0216320, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048931

RESUMO

X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy, caused by mutations in the RS1 gene which encodes the secreted protein retinoschisin. In recent years, several molecules have been proposed to interact with retinoschisin, including the retinal Na/K-ATPase, L-voltage gated Ca2+ channels, and specific sugars. We recently showed that the retinal Na/K-ATPase consisting of subunits ATP1A3 and ATP1B2 is essential for anchoring retinoschisin to plasma membranes and identified the glycosylated ATP1B2 subunit as the direct interaction partner for retinoschisin. We now aimed to precisely map the retinoschisin binding domain(s) in ATP1B2. In general, retinoschisin binding was not affected after selective elimination of individual glycosylation sites via site-directed mutagenesis as well as after full enzymatic deglycosylation of ATP1B2. Applying the interface prediction tool PresCont, two putative protein-protein interaction patches ("patch I" and "patch II") consisting each of four hydrophobic amino acid stretches on the ATP1B2 surface were identified. These were consecutively altered by site-directed mutagenesis. Functional assays with the ATP1B2 patch mutants identified patch II and, specifically, the associated amino acid at position 240 (harboring a threonine in ATP1B2) as crucial for retinoschisin binding to ATP1B2. These and previous results led us to suggest an induced-fit binding mechanism for the interaction between retinoschisin and the Na/K-ATPase, which is dependent on threonine 240 in ATP1B2 allowing the accommodation of hyperflexible retinoschisin spikes by the associated protein-protein interaction patch on ATP1B2.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas do Olho/metabolismo , Retina/metabolismo , Adenosina Trifosfatases/genética , Animais , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Olho/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
12.
Mol Biol Cell ; 28(16): 2178-2189, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615319

RESUMO

Mutations in the RS1 gene cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy. We recently showed that retinoschisin, the protein encoded by RS1, regulates ERK signaling and apoptosis in retinal cells. In this study, we explored an influence of retinoschisin on the functionality of the Na/K-ATPase, its interaction partner at retinal plasma membranes. We show that retinoschisin binding requires the ß2-subunit of the Na/K-ATPase, whereas the α-subunit is exchangeable. Our investigations revealed no effect of retinoschisin on Na/K-ATPase-mediated ATP hydrolysis and ion transport. However, we identified an influence of retinoschisin on Na/K-ATPase-regulated signaling cascades and Na/K-ATPase localization. In addition to the known ERK deactivation, retinoschisin treatment of retinoschisin-deficient (Rs1h-/Y ) murine retinal explants decreased activation of Src, an initial transmitter in Na/K-ATPase signal transduction, and of Ca2+ signaling marker Camk2. Immunohistochemistry on murine retinae revealed an overlap of the retinoschisin-Na/K-ATPase complex with proteins involved in Na/K-ATPase signaling, such as caveolin, phospholipase C, Src, and the IP3 receptor. Finally, retinoschisin treatment altered Na/K-ATPase localization in photoreceptors of Rs1h-/Y retinae. Taken together, our results suggest a regulatory effect of retinoschisin on Na/K-ATPase signaling and localization, whereas Na/K-ATPase-dysregulation caused by retinoschisin deficiency could represent an initial step in XLRS pathogenesis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas do Olho/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Moléculas de Adesão Celular/genética , Membrana Celular/metabolismo , Proteínas do Olho/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Retinosquise/genética , Retinosquise/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa