Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Cell ; 82(13): 2385-2400.e9, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594856

RESUMO

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Células Epiteliais , Inflamassomos , Proteínas NLR , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Caspase 3/metabolismo , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Proteínas NLR/genética , Proteínas NLR/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
2.
PLoS Pathog ; 18(7): e1010305, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849616

RESUMO

Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1ß secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1ß production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.


Assuntos
Inflamassomos , Piroptose , Animais , Proteínas Reguladoras de Apoptose/genética , Caspase 1/metabolismo , Exotoxinas/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/microbiologia , Pseudomonas aeruginosa/metabolismo
3.
EMBO Rep ; 23(10): e54277, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35899491

RESUMO

Neutrophils are the most prevalent immune cells in circulation, but the repertoire of canonical inflammasomes in neutrophils and their respective involvement in neutrophil IL-1ß secretion and neutrophil cell death remain unclear. Here, we show that neutrophil-targeted expression of the disease-associated gain-of-function Nlrp3A350V mutant suffices for systemic autoinflammatory disease and tissue pathology in vivo. We confirm the activity of the canonical NLRP3 and NLRC4 inflammasomes in neutrophils, and further show that the NLRP1b, Pyrin and AIM2 inflammasomes also promote maturation and secretion of interleukin (IL)-1ß in cultured bone marrow neutrophils. Notably, all tested canonical inflammasomes promote GSDMD cleavage in neutrophils, and canonical inflammasome-induced pyroptosis and secretion of mature IL-1ß are blunted in GSDMD-knockout neutrophils. In contrast, GSDMD is dispensable for PMA-induced NETosis. We also show that Salmonella Typhimurium-induced pyroptosis is markedly increased in Nox2/Gp91Phox -deficient neutrophils that lack NADPH oxidase activity and are defective in PMA-induced NETosis. In conclusion, we establish the canonical inflammasome repertoire in neutrophils and identify differential roles for GSDMD and the NADPH complex in canonical inflammasome-induced neutrophil pyroptosis and mitogen-induced NETosis, respectively.


Assuntos
Armadilhas Extracelulares , Inflamassomos , Neutrófilos , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Piroptose , Animais , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitógenos/metabolismo , NADP/metabolismo , NADPH Oxidases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pirina/metabolismo
4.
PLoS Pathog ; 17(9): e1009927, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34516571

RESUMO

Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Peroxidação de Lipídeos/fisiologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Animais , Humanos , Camundongos , Camundongos Knockout , Necrose/metabolismo , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/metabolismo , Virulência/fisiologia
5.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511488

RESUMO

The present study demonstrates that, in addition to interacting with galactosylceramide (GalCer), HIV-1, HIV-2, and SIV envelope glycoproteins are able to interact with glucosylceramide (GlcCer), lactosylceramide (LacCer), and ceramide. These interactions were characterized by using three complementary approaches based on molecular binding and physicochemical assays. The binding assays showed that iodinated radiolabeled HIV-1 and HIV-2 glycoproteins (125I-gp) interact physically with GalCer, GlcCer, LacCer, and ceramide previously separated by thin layer chromatography (TLC) or directly coated on a flexible 96-well plate. These interactions are specific as demonstrated, on the one hand, by the dose-dependent inhibition in the presence of various dilutions of immune, but not non-immune, sera, and, on the other hand, by the absence of interaction of these glycolipids/lipids with 125I-IgG used as an unrelated control protein. These interactions were further confirmed in a physicochemical assay, based on the capacity of these glycolipids for insertion in a pre-established monomolecular film, as a model of the cell membrane, with each glycolipid/lipid. The addition of HIV envelope glycoproteins, but not ovomucoid protein used as a negative control, resulted in a rapid increase in surface pressure of the glycolipid/lipid films, thus indirectly confirming their interactions with GalCer, GlcCer, LacCer, and ceramide. In summary, we show that HIV and SIV envelope glycoproteins bind to GalCer, GlcCer, LacCer, and ceramide in a dose-dependent, saturable, and specific manner. These interactions may function as receptors of attachment in order to facilitate infection of CD4 low or negative cells or promote interactions with other receptors leading to the activation of signaling pathways or pathogenesis.


Assuntos
Glicolipídeos , Infecções por HIV , Humanos , Glicolipídeos/química , Galactosilceramidas/química , Glucosilceramidas , Ceramidas , Glicoproteínas
6.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33514628

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 19 (COVID-19), which ranges from mild respiratory symptoms to acute respiratory distress syndrome, and death in the most severe cases. Immune dysregulation with altered innate cytokine responses is thought to contribute to disease severity. Here, we characterized in depth host cell responses against SARS-CoV-2 in primary human airway epithelia (HAE) and immortalized cell lines. Our results demonstrate that primary HAE and model cells elicit a robust induction of type I and III interferons (IFNs). Importantly, we show for the first time that melanoma differentiation associated gene (MDA)-5 is the main sensor of SARS-CoV-2 in lung cells. IFN exposure strongly inhibited viral replication and de novo production of infectious virions. However, despite high levels of IFNs produced in response to SARS-CoV-2 infection, the IFN response was unable to control viral replication in lung cells, contrary to what was previously reported in intestinal epithelial cells. Altogether, these results highlight the complex and ambiguous interplay between viral replication and the timing of IFN responses.IMPORTANCE Mammalian cells express sensors able to detect specific features of pathogens and induce the interferon response, which is one of the first line of defenses against viruses and help controlling viral replication. The mechanisms and impact of SARS-CoV-2 sensing in lung epithelial cells remained to be deciphered. In this study, we report that despite a high production of type I and III interferons specifically induced by MDA-5-mediated sensing of SARS-CoV-2, primary and immortalized lung epithelial cells are unable to control viral replication. However, exogenous interferons potently inhibited replication, if provided early upon viral exposure. A better understanding of the ambiguous interplay between the interferon response and SARS-CoV-2 replication is essential to guide future therapeutical interventions.

7.
EMBO Rep ; 21(11): e50829, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33124769

RESUMO

Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control.


Assuntos
Caspases , Lipopolissacarídeos , Família da Proteína 8 Relacionada à Autofagia , Caspases/genética , Caspases Iniciadoras , Bactérias Gram-Negativas , Inflamassomos/genética , Macrófagos
8.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362409

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic continues to cause significant morbidity and mortality worldwide. Since a large portion of the world's population is currently unvaccinated or incompletely vaccinated and has limited access to approved treatments against COVID-19, there is an urgent need to continue research on treatment options, especially those at low cost and which are immediately available to patients, particularly in low- and middle-income countries. Prior in vitro and observational studies have shown that fluoxetine, possibly through its inhibitory effect on the acid sphingomyelinase/ceramide system, could be a promising antiviral and anti-inflammatory treatment against COVID-19. In this report, we evaluated the potential antiviral and anti-inflammatory activities of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and against variants of concern in vitro, i.e., SARS-CoV-2 ancestral strain, Alpha B.1.1.7, Gamma P1, Delta B1.617 and Omicron BA.5. Fluoxetine, administrated after SARS-CoV-2 infection, significantly reduced lung tissue viral titres and expression of several inflammatory markers (i.e., IL-6, TNFα, CCL2 and CXCL10). It also inhibited the replication of all variants of concern in vitro. A modulation of the ceramide system in the lung tissues, as reflected by the increase in the ratio HexCer 16:0/Cer 16:0 in fluoxetine-treated mice, may contribute to explain these effects. Our findings demonstrate the antiviral and anti-inflammatory properties of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and its in vitro antiviral activity against variants of concern, establishing fluoxetine as a very promising candidate for the prevention and treatment of SARS-CoV-2 infection and disease pathogenesis.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Ceramidas , Modelos Animais de Doenças , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico
9.
J Virol ; 90(13): 5886-5898, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053552

RESUMO

UNLABELLED: In this study, we show that the HIV-1 Tat protein interacts with rapid kinetics to engage the Toll-like receptor 4 (TLR4) pathway, leading to the production of proinflammatory and anti-inflammatory cytokines. The pretreatment of human monocytes with Tat protein for 10 to 30 min suffices to irreversibly engage the activation of the TLR4 pathway, leading to the production of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10), two cytokines strongly implicated in the chronic activation and dysregulation of the immune system during HIV-1 infection. Therefore, this study analyzed whether the HIV-1 Tat protein is able to activate these two pathways separately or simultaneously. Using three complementary approaches, including mice deficient in the MyD88, TIRAP/MAL, or TRIF adaptor, biochemical analysis, and the use of specific small interfering RNAs (siRNAs), we demonstrated (i) that Tat was able to activate both the MyD88 and TRIF pathways, (ii) the capacity of Tat to induce TIRAP/MAL degradation, (iii) the crucial role of the MyD88 pathway in the production of Tat-induced TNF-α and IL-10, (iv) a reduction but not abrogation of IL-10 and TNF-α by Tat-stimulated macrophages from mice deficient in TIRAP/MAL, and (v) the crucial role of the TRIF pathway in Tat-induced IL-10 production. Further, we showed that downstream of the MyD88 and TRIF pathways, the Tat protein activated the protein kinase C (PKC) ßII isoform, the mitogen-activated protein (MAP) kinases p38 and extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-κB in a TLR4-dependent manner. Collectively, our data show that by recruiting the TLR4 pathway with rapid kinetics, the HIV-1 Tat protein leads to the engagement of both the MyD88 and TRIF pathways and to the activation of PKC, MAP kinase, and NF-κB signaling to induce the production of TNF-α and IL-10. IMPORTANCE: In this study, we demonstrate that by recruiting the TLR4 pathway with rapid kinetics, the HIV-1 Tat protein leads to the engagement of both the MyD88 and TRIF pathways and to the activation of PKC-ßII, MAP kinase, and NF-κB signaling to induce the production of TNF-α and IL-10, two cytokines strongly implicated in the chronic activation and dysregulation of the immune system during HIV-1 infection. Thus, it may be interesting to target Tat as a pathogenic factor early after HIV-1 infection. This could be achieved either by vaccination approaches including Tat as an immunogen in potential candidate vaccines or by developing molecules capable of neutralizing the effect of the Tat protein.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , HIV-1/metabolismo , Interleucina-10/biossíntese , Monócitos/virologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Animais , HIV-1/imunologia , Humanos , Interleucina-10/metabolismo , Cinética , Sistema de Sinalização das MAP Quinases/fisiologia , Glicoproteínas de Membrana/deficiência , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Fator 88 de Diferenciação Mieloide/deficiência , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , RNA Interferente Pequeno , Receptores de Interleucina-1/deficiência , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
10.
J Virol ; 88(12): 6672-89, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696476

RESUMO

UNLABELLED: Chronic human immunodeficiency virus type 1 (HIV-1) infection is associated with induction of T-cell coinhibitory pathways. However, the mechanisms by which HIV-1 induces upregulation of coinhibitory molecules remain to be fully elucidated. The aim of the present study was to determine whether and how HIV-1 Tat protein, an immunosuppressive viral factor, induces the PD-1/PD-L1 coinhibitory pathway on human dendritic cells (DCs). We found that treatment of DCs with whole HIV-1 Tat protein significantly upregulated the level of expression of PD-L1. This PD-L1 upregulation was observed in monocyte-derived dendritic cells (MoDCs) obtained from either uninfected or HIV-1-infected patients as well as in primary myeloid DCs from HIV-negative donors. In contrast, no effect on the expression of PD-L2 or PD-1 molecules was detected. The induction of PD-L1 on MoDCs by HIV-1 Tat (i) occurred in dose- and time-dependent manners, (ii) was mediated by the N-terminal 1-45 fragment of Tat, (iii) did not require direct cell-cell contact but appeared rather to be mediated by soluble factor(s), (iv) was abrogated following neutralization of tumor necrosis factor alpha (TNF-α) or blocking of Toll-like receptor 4 (TLR4), (v) was absent in TLR4-knockoout (KO) mice but could be restored following incubation with Tat-conditioned medium from wild-type DCs, (vi) impaired the capacity of MoDCs to functionally stimulate T cells, and (vii) was not reversed functionally following PD-1/PD-L1 pathway blockade, suggesting the implication of other Tat-mediated coinhibitory pathways. Our results demonstrate that HIV-1 Tat protein upregulates PD-L1 expression on MoDCs through TNF-α- and TLR4-mediated mechanisms, functionally compromising the ability of DCs to stimulate T cells. The findings offer a novel potential molecular target for the development of an anti-HIV-1 treatment. IMPORTANCE: The objective of this study was to investigate the effect of human immunodeficiency virus type 1 (HIV-1) Tat on the PD-1/PD-L1 coinhibitory pathway on human monocyte-derived dendritic cells (MoDCs). We found that treatment of MoDCs from either healthy or HIV-1-infected patients with HIV-1 Tat protein stimulated the expression of PD-L1. We demonstrate that this stimulation was mediated through an indirect mechanism, involving tumor necrosis factor alpha (TNF-α) and Toll-like receptor 4 (TLR4) pathways, and resulted in compromised ability of Tat-treated MoDCs to functionally stimulate T-cell proliferation.


Assuntos
Antígeno B7-H1/genética , Células Dendríticas/imunologia , Infecções por HIV/genética , HIV-1/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Motivos de Aminoácidos , Animais , Antígeno B7-H1/imunologia , Proliferação de Células , Células Cultivadas , Células Dendríticas/virologia , Infecções por HIV/imunologia , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , HIV-1/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/virologia , Linfócitos T/citologia , Linfócitos T/imunologia , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , Regulação para Cima , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
11.
Retrovirology ; 10: 123, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24165011

RESUMO

BACKGROUND: HIV-1 infection results in hyper-immune activation and immunological disorders as early as the asymptomatic stage. Here, we hypothesized that during early HIV-1 infection, HIV-1 Tat protein acts on monocytes/macrophages to induce anti-inflammatory and proinflammatory cytokines and participates in immune dysregulation. RESULTS: In this work we showed that Tat protein: i) by its N-terminal domain induces production of both IL-10 and TNF-α in a TLR4-MD2 dependent manner, ii) interacts specifically with TLR4-MD2 and MD2 with high affinity but not with CD14, iii) induces in vivo TNF-α and IL-10 in a TLR4 dependent manner. CONCLUSIONS: Collectively, our data showed for the first time that, HIV-1 Tat interacts physically with high affinity with TLR4-MD2 to promote proinflammatory cytokines (TNF-α) and the immunosuppressive cytokine IL-10 both involved in immune dysregulation during early HIV-1 infection and AIDS progression.


Assuntos
HIV-1/imunologia , Interações Hospedeiro-Patógeno , Interleucina-10/biossíntese , Antígeno 96 de Linfócito/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Células Cultivadas , Humanos , Interleucina-10/imunologia , Antígeno 96 de Linfócito/imunologia , Monócitos/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia
12.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37642996

RESUMO

Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated by Pseudomonas aeruginosa, specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects exotoxin A (EXOA), a ribotoxin released by P. aeruginosa type 2 secretion system (T2SS), during chronic infection. Mechanistically, EXOA-driven eukaryotic elongation factor 2 (EEF2) ribosylation and covalent inactivation promote ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, diphtheria toxin and cholix toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, cystic fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance of P. aeruginosa virulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2.


Assuntos
Fibrose Cística , Eucariotos , Humanos , Fator 2 de Elongação de Peptídeos , Inflamassomos , Citoplasma , Proteínas NLR
13.
Methods Mol Biol ; 2523: 265-279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35759203

RESUMO

Detection of microbes relies on the expression of germline-encoded pattern recognition receptors (PRRs). While PRRs can directly sense conserved pattern expressed by various microbes, they can also induce effector-triggered immunity (ETI) by sensing pathogenic alterations of cellular homeostasis. One consequence of ETI is the death of the infected cell through the induction of inflammasome-dependent cell death, namely, pyroptosis. Such process can be easily studied in macrophages and epithelial cells, yet neutrophils encode an arsenal of proteolytic enzymes that imped easy and reliable study of ETI-triggered inflammasome response. Here, we describe an immunoblotting methodology to study both ETI- and PRR-driven inflammasome responses in neutrophils upon bacterial infections. This method is also transposable to other microbial pathogen- and toxin-induced inflammasome response in neutrophils.


Assuntos
Inflamassomos , Neutrófilos , Bactérias/metabolismo , Immunoblotting , Inflamassomos/metabolismo , Neutrófilos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo
14.
Viruses ; 14(5)2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35632741

RESUMO

This paper presents a molecular characterization of the interaction between the SARS-CoV-2 envelope (E) protein and TLR2. We demonstrated that the E protein, both as a recombinant soluble protein and as a native membrane protein associated with SARS-CoV-2 viral particles, interacts physically with the TLR2 receptor in a specific and dose-dependent manner. Furthermore, we showed that the specific interaction with the TLR2 pathway activates the NF-κB transcription factor and stimulates the production of the CXCL8 inflammatory chemokine. In agreement with the importance of NF-κB in the TLR signaling pathway, we showed that the chemical inhibition of this transcription factor leads to significant inhibition of CXCL8 production, while the blockade of the P38 and ERK1/2 MAP kinases only results in partial CXCL8 inhibition. Overall, our findings propose the envelope (E) protein as a novel molecular target for COVID-19 interventions: either (i) by exploring the therapeutic effect of anti-E blocking/neutralizing antibodies in symptomatic COVID-19 patients, or (ii) as a promising non-spike SARS-CoV-2 antigen candidate for inclusion in the development of next-generation prophylactic vaccines against COVID-19 infection and disease.


Assuntos
COVID-19 , Proteínas do Envelope de Coronavírus , SARS-CoV-2 , Receptor 2 Toll-Like , Proteínas do Envelope de Coronavírus/metabolismo , Humanos , Interleucina-8 , NF-kappa B , Receptor 2 Toll-Like/metabolismo
15.
Autophagy ; 18(12): 2913-2925, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35311462

RESUMO

Escherichia coli strains are responsible for a majority of human extra-intestinal infections, resulting in huge direct medical and social costs. We had previously shown that HlyF encoded by a large virulence plasmid harbored by pathogenic E. coli is not a hemolysin but a cytoplasmic enzyme leading to the overproduction of outer membrane vesicles (OMVs). Here, we showed that these specific OMVs inhibit the macroautophagic/autophagic flux by impairing the autophagosome-lysosome fusion, thus preventing the formation of acidic autolysosomes and autophagosome clearance. Furthermore, HlyF-associated OMVs were more prone to activate the non-canonical inflammasome pathway. Because autophagy and inflammation are crucial in the host's response to infection especially during sepsis, our findings revealed an unsuspected role of OMVs in the crosstalk between bacteria and their host, highlighting the fact that these extracellular vesicles have exacerbated pathogenic properties.Abbreviations: AIEC: adherent-invasive E. coliBDI: bright detail intensityBMDM: bone marrow-derived macrophagesCASP: caspaseE. coli: Escherichia coliEHEC: enterohemorrhagic E. coliExPEC: extra-intestinal pathogenic E. coliGSDMD: gasdermin DGFP: green fluorescent proteinHBSS: Hanks' balanced salt solutionHlyF: hemolysin FIL1B/IL-1B: interleukin 1 betaISX: ImageStreamX systemLPS: lipopolysaccharideMut: mutatedOMV: outer membrane vesicleRFP: red fluorescent proteinTEM: transmission electron microscopyWT: wild-type.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/metabolismo , Inflamassomos/metabolismo , Proteínas Hemolisinas , Autofagia , Infecções por Escherichia coli/metabolismo
16.
Sci Rep ; 10(1): 8177, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424165

RESUMO

In the present study we showed that HIV-1 Tat protein stimulated the expression of Indoleamine 2,3 dioxygenase (IDO) -1 in human monocytes derived dendritic cells (MoDC) but not IDO-2 by acting directly at the cell membrane level. This induction of IDO-1 is dependent on the secondary structure of Tat protein, since stimulation with a chemically oxidized Tat protein loses its capacity to induce the production of IDO-1. Among the variety of candidate receptors described for Tat, we demonstrated that Tat protein interacted physically with TLR4/MD2 complex. Strikingly, blockade of Tat-TLR4 interaction by anti-TLR4 antibodies (clone HTA125), LPS-RS, a known TLR4 antagonist, or by soluble recombinant TLR4/MD2 complex inhibited strongly or totally the capacity of Tat to induce IDO-1 in MoDC while such treatments had no effect on IFN-γ-induced IDO-1. Furthermore, we showed that the activation of the transcription factor NF-κB by Tat is essential for the production of IDO-1 by human MoDC. Indeed, Tat activated NF-κB pathway in MoDC as demonstrated by the phosphorylation of p65 in Tat-treated MoDC. Further, we demonstrate that the stimulation of IDO-1 by Tat or by IFN-γ was totally or partially inhibited in the presence of NF-κB inhibitor respectively. These results suggest that Tat and IFN-γ act probably by two distinct mechanisms to induce the production of IDO-1. Our results clearly demonstrated that, although TLR4 pathway is necessary for Tat-induced IDO-1 in MoDC, it seems not to be sufficient since stable transfection of a functional TLR4/MD2 pathway in HEK or HeLa cell lines which are endogenously defectives for TLR4, did not restore the capacity of Tat to induce IDO-1 while IFN-γ treatment induces IDO-1 in HeLa cells independently of TLR4 pathway. These results suggest the involvement of additional stimuli in addition to TLR4 pathway which remain to be identified. Altogether our results demonstrated that, in human MoDC, HIV-1 Tat protein induced IDO-1 expression and activity in a NF-κB dependent-manner by recruiting TLR4 pathway.


Assuntos
Células Dendríticas/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Antígeno 96 de Linfócito/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Interferon gama/genética , Interferon gama/metabolismo , Antígeno 96 de Linfócito/genética , Monócitos/metabolismo , NF-kappa B/genética , Ligação Proteica , Receptor 4 Toll-Like/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
17.
Biosci Rep ; 39(9)2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31477581

RESUMO

The trimeric heptad repeat domains HR1 and HR2 of the human immunodeficiency virus 1 (HIV-1) gp41 play a key role in HIV-1-entry by membrane fusion. To develop efficient inhibitors against this step, the corresponding trimeric-N36 and C34 peptides were designed and synthesized. Analysis by circular dichroism of monomeric and trimeric N36 and C34 peptides showed their capacities to adopt α-helical structures and to establish physical interactions. At the virological level, while trimeric-C34 conserves the same high anti-fusion activity as monomeric-C34, trimerization of N36-peptide induced a significant increase, reaching 500-times higher in anti-fusion activity, against R5-tropic virus-mediated fusion. This result was associated with increased stability of the N36 trimer peptide with respect to the monomeric form, as demonstrated by the comparative kinetics of their antiviral activities during 6-day incubation in a physiological medium. Collectively, our findings demonstrate that while the trimerization of C34 peptide had no beneficial effect on its stability and antiviral activity, the trimerization of N36 peptide strengthened both stability and antiviral activity. This approach, promotes trimers as new promising HIV-1 inhibitors and point to future development aimed toward innovative peptide fusion inhibitors, microbicides or as immunogens.


Assuntos
Proteína gp41 do Envelope de HIV/química , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Fragmentos de Peptídeos/química , Sequência de Aminoácidos/genética , Dicroísmo Circular , Desenho de Fármacos , Proteína gp41 do Envelope de HIV/síntese química , Proteína gp41 do Envelope de HIV/farmacologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Fusão de Membrana/efeitos dos fármacos , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Conformação Proteica em alfa-Hélice
18.
Cell Host Microbe ; 25(1): 140-152.e6, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30581112

RESUMO

The opportunistic human pathogen Pseudomonas aeruginosa effectively colonizes host epithelia using pili as primary adhesins. Here we uncover a surface-specific asymmetric virulence program that enhances P. aeruginosa host colonization. We show that when P. aeruginosa encounters surfaces, the concentration of the second messenger c-di-GMP increases within a few seconds. This leads to surface adherence and virulence induction by stimulating pili assembly through activation of the c-di-GMP receptor FimW. Surface-attached bacteria divide asymmetrically to generate a piliated, surface-committed progeny (striker) and a flagellated, motile offspring that leaves the surface to colonize distant sites (spreader). Cell differentiation is driven by a phosphodiesterase that asymmetrically positions to the flagellated pole, thereby maintaining c-di-GMP levels low in the motile offspring. Infection experiments demonstrate that cellular asymmetry strongly boosts infection spread and tissue damage. Thus, P. aeruginosa promotes surface colonization and infection transmission through a cooperative virulence program that we termed Touch-Seed-and-Go.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Células A549 , Apoptose , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Proteínas de Transporte , Diferenciação Celular , GMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Fímbrias Bacterianas/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Recombinação Homóloga , Humanos , Mutagênese Sítio-Dirigida , Diester Fosfórico Hidrolases/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Virulência
19.
Sci Rep ; 8(1): 17215, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464243

RESUMO

Human HIV-1 infection leads inevitably to a chronic hyper-immune-activation. However, the nature of the targeted receptors and the pathways involved remain to be fully elucidated. We demonstrate that X4-tropic gp120 induced the production of TNF-α and IL-10 by monocytes through activation of a cell membrane receptor, distinct from the CD4, CXCR4, and MR receptors. Gp120 failed to stimulate IL-10 and TNF-α production by monocytes in Ca2+ free medium. This failure was total for IL-10 and partial for TNF-α. However, IL-10 and TNF-α production was fully restored following the addition of exogenous calcium. Accordingly, addition of BAPTA-AM and cyclosporine-A, fully and partially inhibited IL-10 and TNF-α respectively. The PKA pathway was crucial for IL-10 production but only partially involved in gp120-induced TNF-α. The PLC pathway was partially and equivalently involved in gp120-induced TNF-α and IL-10. Moreover, the inhibition of PI3K, ERK1/2, p38 MAP-kinases and NF-κB pathways totally abolished the production of both cytokines. In conclusion, this study revealed the crucial calcium signaling pathway triggered by HIV-1 gp120 to control the production of these two cytokines: TNF-α and IL-10. The finding could help in the development of a new therapeutic strategy to alleviate the chronic hyper-immune-activation observed in HIV-1 infected patients.


Assuntos
Cálcio/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Interleucina-10/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Monócitos/metabolismo , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa