Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 26(3): 427-34, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25603321

RESUMO

DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.


Assuntos
Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas de Bactérias/química , DNA/química , DNA de Cadeia Simples/química , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química
2.
Nat Chem Biol ; 9(11): 685-692, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056399

RESUMO

Type I polyketide synthases often use programmed ß-branching, via enzymes of a 'hydroxymethylglutaryl-CoA synthase (HCS) cassette', to incorporate various side chains at the second carbon from the terminal carboxylic acid of growing polyketide backbones. We identified a strong sequence motif in acyl carrier proteins (ACPs) where ß-branching is known to occur. Substituting ACPs confirmed a correlation of ACP type with ß-branching specificity. Although these ACPs often occur in tandem, NMR analysis of tandem ß-branching ACPs indicated no ACP-ACP synergistic effects and revealed that the conserved sequence motif forms an internal core rather than an exposed patch. Modeling and mutagenesis identified ACP helix III as a probable anchor point of the ACP-HCS complex whose position is determined by the core. Mutating the core affects ACP functionality, whereas ACP-HCS interface substitutions modulate system specificity. Our method for predicting ß-carbon branching expands the potential for engineering new polyketides and lays a basis for determining specificity rules.


Assuntos
Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Sequência Conservada , Hidroximetilglutaril-CoA Sintase/metabolismo , Policetídeos/metabolismo , Proteína de Transporte de Acila/genética , Motivos de Aminoácidos , Modelos Moleculares , Conformação Molecular , Policetídeos/química
3.
Structure ; 32(6): 824-837.e1, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38490206

RESUMO

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Software
4.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328042

RESUMO

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.

5.
Biochemistry ; 49(10): 2186-93, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20136099

RESUMO

Acyl (peptidyl) carrier protein (ACP or PCP) is a crucial component involved in the transfer of thiol ester-bound intermediates during the biosynthesis of primary and secondary metabolites such as fatty acids, polyketides, and nonribosomal peptides. Although many carrier protein three-dimensional structures have been determined, to date there is no model available for a fungal type I polyketide synthase ACP. Here we report the solution structure of the norsolorinic acid synthase (NSAS) holo ACP domain that has been excised from the full-length multifunctional enzyme. NSAS ACP shows similarities in three-dimensional structure with other type I and type II ACPs, consisting of a four-helix bundle with helices I, II, and IV arranged in parallel. The N-terminus of helix III, however, is unusually hydrophobic, and Phe1768 and Leu1770 pack well with the core of the protein. The result is that unlike other carrier proteins, helix III lies almost perpendicular to the three major helices. Helix III is well-defined by numerous NMR-derived distance restraints and may be less flexible than counterparts in type II FAS and PKS ACPs. When the holo ACP is derivatized with a hexanoyl group, only minor changes are observed between the HSQC spectra of the two ACP species and no NOEs are observed for this hydrophobic acyl group. Along with the mammalian type I FAS, this further strengthens the view that type I ACPs do not show any significant affinity for hydrophobic (nonpolar) chain assembly intermediates attached via the 4'-phosphopantetheine prosthetic group.


Assuntos
Proteína de Transporte de Acila/química , Policetídeo Sintases/química , Streptomyces coelicolor/enzimologia , Acilação , Sequência de Aminoácidos , Aporfinas/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Policetídeo Sintases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Soluções
6.
Chem Biol ; 17(7): 776-85, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20659690

RESUMO

It remains unclear whether in a bacterial fatty acid synthase (FAS) acyl chain transfer is a programmed or diffusion controlled and random action. Acyl carrier protein (ACP), which delivers all intermediates and interacts with all synthase enzymes, is the key player in this process. High-resolution structures of intermediates covalently bound to an ACP representing each step in fatty acid biosynthesis have been solved by solution NMR. These include hexanoyl-, 3-oxooctanyl-, 3R-hydroxyoctanoyl-, 2-octenoyl-, and octanoyl-ACP from Streptomyces coelicolor FAS. The high-resolution structures reveal that the ACP adopts a unique conformation for each intermediate driven by changes in the internal fatty acid binding pocket. The binding of each intermediate shows conserved structural features that may ensure effective molecular recognition over subsequent rounds of fatty acid biosynthesis.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Graxos/biossíntese , Streptomyces coelicolor/metabolismo , Proteína de Transporte de Acila/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Panteteína/análogos & derivados , Panteteína/metabolismo , Conformação Proteica
7.
ACS Chem Biol ; 4(8): 625-36, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19555075

RESUMO

Malonylation of an acyl carrier protein (ACP) by malonyl Coenzyme A-ACP transacylase (MCAT) is fundamental to bacterial fatty acid biosynthesis. Here, we report the structure of the Steptomyces coelicolor (Sc) fatty acid synthase (FAS) ACP and studies of its binding to MCAT. The carrier protein adopts an alpha-helical bundle structure common to other known carrier proteins. The Sc FAS ACP shows close structural homology with other fatty acid ACPs and less similarity with Sc actinorhodin (act) polyketide synthase (PKS) ACP where the orientation of helix I differs. NMR experiments were used to map the binding of ACP to MCAT. This data suggests that Sc FAS ACP interacts with MCAT through the negatively charged helix II of ACP, consistent with proposed models for ACP recognition by other FAS enzymes. Differential roles for residues at the interface are demonstrated using site-directed mutagenesis and in vitro assays. MCAT has been suggested, moreover, to participate in bacterial polyketide synthesis in vivo. We demonstrate that the affinity of the polyketide synthase ACP for MCAT is lower than that of the FAS ACP. Mutagenesis of homologous helix II residues on the polyketide synthase ACP suggests that the PKS ACP may bind to MCAT in a different manner than the FAS counterpart.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/química , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Streptomyces coelicolor/química , Streptomyces coelicolor/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
8.
J Mol Biol ; 389(3): 511-28, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19361520

RESUMO

Acyl carrier proteins (ACPs) are essential to both fatty acid synthase (FAS) and polyketide synthase (PKS) biosynthetic pathways, yet relatively little is known about how they function at a molecular level. Seven thiol ester and thiol ether derivatives of the actinorhodin (act) PKS ACP from Streptomyces coelicolor have been prepared and structurally characterised by NMR to gain insight into ACP-intermediate interactions. Holo ACP synthase has been used to prepare early-stage ACP intermediates of polyketide biosynthesis (holo ACP, acetyl ACP, and malonyl ACP) from the respective coenzyme A derivatives. A synthetic route to stabilised thiol ether ACPs was developed and applied to the preparation of stable 3-oxobutyl and 3,5-dioxohexyl ACP as diketide and triketide analogues. No interaction between the protein and the acyl phosphopantetheine moieties of acetyl, malonyl, or 3-oxobutyl ACP was detected. Analysis of (1)H-(15)N heteronuclear single quantum coherence and nuclear Overhauser enhancement spectroscopy spectra for the triketide ACP revealed exchange between a major ('Tri', 85%) and a minor protein conformer in which the polyketide interacts with the protein ('Tri(*)', 15%). Act ACP was also derivatised with butyryl, hexanoyl, and octanoyl groups. The corresponding NMR spectra showed large chemical shift perturbations centred on helices II and III, indicative of acyl chain binding and significant structural rearrangement. Unexpectedly, butyryl act ACP showed almost identical backbone (1)H-(15)N chemical shifts to Tri(*), suggesting comparable structural changes that might provide insight into the structurally uncharacterised polyketide bound form. Furthermore, butyryl ACP itself underwent slow conformational exchange with a second minor conformer (But(*)) with almost identical backbone chemical shifts to octanoyl act ACP. High-resolution NMR structures of these acylated forms revealed that act ACP was able to undergo dramatic conformational changes that exceed those seen in FAS ACPs. When compared to E. coli FAS ACP, the substrate binding pocket of the act PKS ACP has three specific amino acid substitutions (Thr39/Leu45, Ala68/Leu74, and Leu42/Thr48) that alter the size, shape, and location of this cavity. These conformational changes may play a role in protein-protein recognition and assist the binding of bulky polyketide intermediates.


Assuntos
Proteína de Transporte de Acila/metabolismo , Macrolídeos/metabolismo , Policetídeo Sintases/metabolismo , Streptomyces coelicolor/enzimologia , Proteína de Transporte de Acila/química , Sequência de Aminoácidos , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Policetídeo Sintases/química , Conformação Proteica
9.
J Biol Chem ; 283(1): 518-528, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17971456

RESUMO

The synthases that produce fatty acids in mammals (FASs) are arranged as large multidomain polypeptides. The growing fatty acid chain is bound covalently during chain elongation and reduction to the acyl carrier protein (ACP) domain that is then able to access each catalytic site. In this work we report the high-resolution nuclear magnetic resonance (NMR) solution structure of the isolated rat fatty acid synthase apoACP domain. The final ensemble of NMR structures and backbone (15)N relaxation studies show that apoACP adopts a single, well defined fold. On conversion to the holo form, several small chemical shift changes are observed on the ACP for residues surrounding the phosphopantetheine attachment site (as monitored by backbone (1)H-(15)N correlation experiments). However, there are negligible chemical shift changes when the holo form is modified to either the hexanoyl or palmitoyl forms. For further NMR analysis, a (13)C,(15)N-labeled hexanoyl-ACP sample was prepared and full chemical shift assignments completed. Analysis of two-dimensional F(2)-filtered and three-dimensional (13)C-edited nuclear Overhauser effect spectroscopy experiments revealed no detectable NOEs to the acyl chain. These experiments demonstrate that unlike other FAS ACPs studied, this Type I ACP does not sequester a covalently linked acyl moiety, although transient interactions cannot be ruled out. This is an important mechanistic difference between the ACPs from Type I and Type II FASs and may be significant for the modulation and regulation of these important mega-synthases.


Assuntos
Proteína de Transporte de Acila/química , Ácido Graxo Sintase Tipo I/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Sequência de Aminoácidos , Animais , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular/métodos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa