Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Lett ; 42(6): 885-904, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32246346

RESUMO

The study of the epigenetic regulation of gene function has reached pivotal importance in life sciences in the last decades. The mechanisms and effects of processes such as DNA methylation, histone posttranslational modifications and non-coding RNAs, as well as their impact on chromatin structure and dynamics, are clearly involved in physiology homeostasis in plants, animals and microorganisms. In the fungal kingdom, studies on the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe contributed enormously to the elucidation of the eukaryote epigenetic landscape. Epigenetic regulation plays a central role in the expression of virulence attributes of human pathogens such as Candida albicans. In this article, we review the most recent studies on the effects of drugs capable of altering epigenetic states and on the impact of chromatin structure-related genes deletion in filamentous fungi. Emphasis is given on plant and insect pathogens, endophytes, secondary metabolites and cellulases/xylanases producing species.


Assuntos
Epigênese Genética , Fungos , Regulação Fúngica da Expressão Gênica , Biotecnologia , Candida albicans , Deleção de Genes , Inibidores de Histona Desacetilases
2.
Microbiol Spectr ; 10(5): e0150422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36005449

RESUMO

Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C. neoformans, whose study is promising in understanding the pathophysiology of cryptococcosis. The use of fluorescent strains is improving host interaction research, but it is still underexploited. Here, we fused histone H3 or the poly(A) binding protein (Pab) to enhanced green fluorescent protein (eGFP) or mCherry, obtaining a set of C. neoformans transformants with different colors, patterns of fluorescence, and selective markers (hygromycin B resistance [Hygr] or neomycin resistance [Neor]). We validated their similarity to the parental strain in the stress response, the expression of virulence-related phenotypes, mating, virulence in Galleria mellonella, and survival within murine macrophages. PAB-GFP, the brightest transformant, was successfully applied for the analysis of phagocytosis by flow cytometry and fluorescence microscopy. Moreover, we demonstrated that an engineered fluorescent strain of C. neoformans was able to generate VBNC cells. GFP-tagged Pab1, a key regulator of the stress response, evidenced nuclear retention of Pab1 and the assembly of cytoplasmic stress granules, unveiling posttranscriptional mechanisms associated with dormant C. neoformans cells. Our results support that the PAB-GFP strain is a useful tool for research on C. neoformans. IMPORTANCE Cryptococcus neoformans is a human-pathogenic yeast that can undergo a dormant state and is responsible for over 180,000 deaths annually worldwide. We engineered a set of fluorescent transformants to aid in research on C. neoformans. A mutant with GFP-tagged Pab1 improved fluorescence-based techniques used in host interaction studies. Moreover, this mutant induced a viable but nonculturable phenotype and uncovered posttranscriptional mechanisms associated with dormant C. neoformans. The experimental use of fluorescent mutants may shed light on C. neoformans-host interactions and fungal biology, including dormant phenotypes.


Assuntos
Criptococose , Cryptococcus neoformans , Camundongos , Humanos , Animais , Cryptococcus neoformans/genética , Histonas , Higromicina B , Interações Hospedeiro-Patógeno , Neomicina , Biologia
3.
Microbiol Spectr ; 9(2): e0108821, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523973

RESUMO

Humicola grisea var. thermoidea is a thermophilic ascomycete and important enzyme producer that has an efficient enzymatic system with a broad spectrum of thermostable carbohydrate-active (CAZy) enzymes. These enzymes can be employed in lignocellulose biomass deconstruction and other industrial applications. In this work, the genome of H. grisea var. thermoidea was sequenced. The acquired sequence reads were assembled into a total length of 28.75 Mbp. Genome features correlate with what was expected for thermophilic Sordariomycetes. The transcriptomic data showed that sugarcane bagasse significantly upregulated genes related to primary metabolism and polysaccharide deconstruction, especially hydrolases, at both pH 5 and pH 8. However, a number of exclusive and shared genes between the pH values were found, especially at pH 8. H. grisea expresses an average of 211 CAZy enzymes (CAZymes), which are capable of acting in different substrates. The top upregulated genes at both pH values represent CAZyme-encoding genes from different classes, including acetylxylan esterase, endo-1,4-ß-mannosidase, exoglucanase, and endoglucanase genes. For the first time, the arsenal that the thermophilic fungus H. grisea var. thermoidea possesses to degrade the lignocellulosic biomass is shown. Carbon source and pH are of pivotal importance in regulating gene expression in this organism, and alkaline pH is a key regulatory factor for sugarcane bagasse hydrolysis. This work paves the way for the genetic manipulation and robust biotechnological applications of this fungus. IMPORTANCE Most studies regarding the use of fungi as enzyme producers for biomass deconstruction have focused on mesophile species, whereas the potential of thermophiles has been evaluated less. This study revealed, through genome and transcriptome analyses, the genetic repertoire of the biotechnological relevant thermophile fungus Humicola grisea. Comparative genomics helped us to further understand the biology and biotechnological potential of H. grisea. The results demonstrate that this fungus possesses an arsenal of carbohydrate-active (CAZy) enzymes to degrade the lignocellulosic biomass. Indeed, it expresses more than 200 genes encoding CAZy enzymes when cultivated in sugarcane bagasse. Carbon source and pH are key factors for regulating the gene expression in this organism. This work shows, for the first time, the great potential of H. grisea as an enzyme producer and a gene donor for biotechnological applications and provides the base for the genetic manipulation and robust biotechnological applications of this fungus.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/metabolismo , Metabolismo dos Carboidratos/fisiologia , Lignina/metabolismo , Saccharum/microbiologia , Ascomicetos/genética , Composição de Bases/genética , Biomassa , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica , Genoma Fúngico/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Saccharum/metabolismo , Transcriptoma/genética , Sequenciamento Completo do Genoma
4.
J Fungi (Basel) ; 7(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673204

RESUMO

Pathogenic microbes are exposed to a number of potential DNA-damaging stimuli during interaction with the host immune system. Microbial survival in this situation depends on a fine balance between the maintenance of DNA integrity and the adaptability provided by mutations. In this study, we investigated the association of the DNA repair response with the virulence of Cryptococcus neoformans, a basidiomycete that causes life-threatening meningoencephalitis in immunocompromised individuals. We focused on the characterization of C. neoformansAPN1 and APN2 putative genes, aiming to evaluate a possible role of the predicted Apurinic/apyrimidinic (AP) endonucleases 1 and 2 of the base excision repair (BER) pathway on C. neoformans response to stress conditions and virulence. Our results demonstrated the involvement of the putative AP-endonucleases Apn1 and Apn2 in the cellular response to DNA damage induced by alkylation and by UV radiation, in melanin production, in tolerance to drugs and in virulence of C. neoformans in vivo. We also pointed out the potential use of DNA repair inhibitor methoxy-amine in combination with conventional antifungal drugs, for the development of new therapeutic approaches against this human fungal pathogen. This work provides new information about the DNA damage response of the highly important pathogenic fungus C. neoformans.

5.
J Photochem Photobiol B ; 216: 112131, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33517071

RESUMO

Cryptococcus is a globally distributed fungal pathogen that primarily afflicts immunocompromised individuals. The therapeutic options are limited and include mostly amphotericin B or fluconazole, alone or in combination. The extensive usage of antifungals allowed the selection of resistant pathogens posing threats to global public health. Histone deacetylase genes are involved in Cryptococcus virulence, and in pathogenicity and resistance to azoles in Candida albicans. Aiming to assess whether histone deacetylase genes are involved in antifungal response and in synergistic drug interactions, we evaluated the activity of amphotericin B, fluconazole, sulfamethoxazole, sodium butyrate or trichostatin A (histone deacetylase inhibitors), and hydralazine or 5- aza-2'-deoxycytidine (DNA methyl-transferase inhibitors) against different Cryptococcus neoformans strains, C. neoformans histone deacetylase null mutants and Cryptococcus gattii NIH198. The drugs were employed alone or in different combinations. Fungal growth after photodynamic therapy mediated by an aluminium phthalocyanine chloride nanoemulsion, alone or in combination with the aforementioned drugs, was assessed for the C. neoformans HDAC null mutant strains. Our results showed that fluconazole was synergistic with sodium butyrate or with trichostatin A for the hda1Δ/hos2Δ double mutant strain. Sulfamethoxazole was synergistic with sodium butyrate or with hydralazine also for hda1Δ/hos2Δ. These results clearly indicate a link between HDAC impairment and drug sensitivity. Photodynamic therapy efficacy on controlling the growth of the HDAC mutant strains was increased by amphotericin B, fluconazole, sodium butyrate or hydralazine. This is the first study in Cryptococcus highlighting the combined effects of antifungal drugs, histone deacetylase or DNA methyltransferase inhibitors and photodynamic therapy in vitro.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Criptococose/tratamento farmacológico , Cryptococcus neoformans/enzimologia , Epigênese Genética/efeitos dos fármacos , Histona Desacetilases/genética , Indóis/metabolismo , Compostos Organometálicos/metabolismo , Fotoquimioterapia/métodos , Anfotericina B/química , Ácido Butírico/química , Sinergismo Farmacológico , Emulsões/química , Fluconazol/química , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/química , Indóis/farmacologia , Nanopartículas/química , Compostos Organometálicos/farmacologia , Sulfametoxazol/química
6.
Sci Rep ; 8(1): 5209, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581526

RESUMO

The human fungal pathogen Cryptococcus neoformans undergoes many phenotypic changes to promote its survival in specific ecological niches and inside the host. To explore the role of chromatin remodeling on the expression of virulence-related traits, we identified and deleted seven genes encoding predicted class I/II histone deacetylases (HDACs) in the C. neoformans genome. These studies demonstrated that individual HDACs control non-identical but overlapping cellular processes associated with virulence, including thermotolerance, capsule formation, melanin synthesis, protease activity and cell wall integrity. We also determined the HDAC genes necessary for C. neoformans survival during in vitro macrophage infection and in animal models of cryptococcosis. Our results identified the HDA1 HDAC gene as a central mediator controlling several cellular processes, including mating and virulence. Finally, a global gene expression profile comparing the hda1Δ mutant versus wild-type revealed altered transcription of specific genes associated with the most prominent virulence attributes in this fungal pathogen. This study directly correlates the effects of Class I/II HDAC-mediated chromatin remodeling on the marked phenotypic plasticity and virulence potential of this microorganism. Furthermore, our results provide insights into regulatory mechanisms involved in virulence gene expression that are likely shared with other microbial pathogens.


Assuntos
Criptococose/genética , Cryptococcus neoformans/enzimologia , Histona Desacetilases/genética , Virulência/genética , Animais , Parede Celular , Criptococose/enzimologia , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica/genética , Genoma Fúngico/genética , Histona Desacetilases/classificação , Humanos , Macrófagos/microbiologia , Macrófagos/patologia
7.
Nanomedicine (Lond) ; 12(23): 2637-2649, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29111877

RESUMO

AIM: To evaluate the DNA methylation profile of MCF-7 cells during and after the treatment with maghemite nanoparticles (MNP-CIT). MATERIALS & METHODS: Noncytotoxic MNP-CIT concentrations and cell morphology were evaluated by standard methods. DNA methylation was assessed by whole genome bisulfite sequencing. DNA methyltransferase (DNMT) genes expression was analyzed by qRT-PCR. RESULTS: A total of 30 and 60 µgFeml-1 MNP-CIT accumulated in cytoplasm but did not present cytotoxic effects. The overall percentage of DNA methylation was not affected, but 58 gene-associated regions underwent DNA methylation reprogramming, including genes related to cancer onset. DNMT transcript levels were also modulated. CONCLUSION: Transient exposure to MNP-CIT promoted epigenomic changes and altered the DNMT genes regulation in MCF-7 cells. These events should be considered for biomedical applications.


Assuntos
Metilação de DNA/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/farmacologia , Nanopartículas Metálicas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Tamanho da Partícula , Propriedades de Superfície
8.
Rev Iberoam Micol ; 22(4): 203-12, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16499412

RESUMO

Paracoccidioides brasiliensis is a dimorphic and thermo-regulated fungus which is the causative agent of paracoccidioidomycosis, an endemic disease widespread in Latin America that affects 10 million individuals. Pathogenicity is assumed to be a consequence of the dimorphic transition from mycelium to yeast cells during human infection. This review shows the results of the P. brasiliensis transcriptome project which generated 6,022 assembled groups from mycelium and yeast phases. Computer analysis using the tools of bioinformatics revealed several aspects from the transcriptome of this pathogen such as: general and differential metabolism in mycelium and yeast cells; cell cycle, DNA replication, repair and recombination; RNA biogenesis apparatus; translation and protein fate machineries; cell wall; hydrolytic enzymes; proteases; GPI-anchored proteins; molecular chaperones; insights into drug resistance and transporters; oxidative stress response and virulence. The present analysis has provided a more comprehensive view of some specific features considered relevant for the understanding of basic and applied knowledge of P. brasiliensis.


Assuntos
Genoma Fúngico , Paracoccidioides/genética , Parede Celular/metabolismo , Quitosana/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Genes Fúngicos , Humanos , América Latina/epidemiologia , Chaperonas Moleculares/genética , Estresse Oxidativo/genética , Paracoccidioides/ultraestrutura , Paracoccidioidomicose/epidemiologia , Paracoccidioidomicose/microbiologia , Transcrição Gênica , Virulência/genética
9.
Genet Mol Res ; 4(2): 232-50, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16110444

RESUMO

DNA replication, together with repair mechanisms and cell cycle control, are the most important cellular processes necessary to maintain correct transfer of genetic information to the progeny. These processes are well conserved throughout the Eukarya, and the genes that are involved provide essential information for understanding the life cycle of an organism. We used computational tools for data mining of genes involved in these processes in the pathogenic fungus Paracoccidiodes brasiliensis. Data derived from transcriptome analysis revealed that the cell cycle of this fungus, as well as DNA replication and repair, and the recombination machineries, are highly similar to those of the yeast Saccharomyces cerevisiae. Among orthologs detected in both species, there are genes related to cytoskeleton structure and assembly, chromosome segregation, and cell cycle control genes. We identified at least one representative gene from each step of the initiation of DNA replication. Major players in the process of DNA damage and repair were also identified.


Assuntos
Ciclo Celular/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA Fúngico/genética , Paracoccidioides/genética , Recombinação Genética/genética , Ciclo Celular/fisiologia , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Genes Fúngicos/genética , Humanos , Mutação/genética , Paracoccidioides/citologia , Recombinação Genética/fisiologia , Transcrição Gênica/genética
10.
Enzyme Res ; 2013: 287343, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936633

RESUMO

Aspergillus nidulans is poorly exploited as a source of enzymes for lignocellulosic residues degradation for biotechnological purposes. This work describes the A. nidulans Endoglucanase A heterologous expression in Pichia pastoris, the purification and biochemical characterization of the recombinant enzyme. Active recombinant endoglucanase A (rEG A) was efficiently secreted as a 35 kDa protein which was purified through a two-step chromatography procedure. The highest enzyme activity was detected at 50°C/pH 4. rEG A retained 100% of activity when incubated at 45 and 55°C for 72 h. Purified rEG A kinetic parameters towards CMC were determined as K m = 27.5 ± 4.33 mg/mL, V max = 1.185 ± 0.11 mmol/min, and 55.8 IU (international units)/mg specific activity. Recombinant P. pastoris supernatant presented hydrolytic activity towards lignocellulosic residues such as banana stalk, sugarcane bagasse, soybean residues, and corn straw. These data indicate that rEG A is suitable for plant biomass conversion into products of commercial importance, such as second-generation fuel ethanol.

11.
Enzyme Microb Technol ; 48(1): 19-26, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22112766

RESUMO

Time-course expression profiles of one xylanase and eight cellulase encoding genes, as well as of two transcription factor encoding genes of Humicola grisea var. thermoidea were established in different culture media pHs and carbon sources (glucose and sugarcane bagasse). Quantitative real-time RT-PCR analysis revealed a remarkable and parallel increase in mRNA accumulation for cbh1.1, cbh1.2, egl1, egl2, egl3, bgl4 and xyn1 at alkaline pH and with sugarcane bagasse employed as the sole carbon source. Glucose utilization led to a higher creA mRNA accumulation compared to the other genes. A distinct pattern was observed for egl4, whose mRNA preferably accumulated in acidic conditions. The transcriptional profile data combined with the analysis of the in vitro binding of PacC and CreA transcription factors to the promoters support the CreA-mediated carbon repression and the PacC-related pH regulation of H. grisea cellulase and xylanase encoding genes. Moreover, EMSA analyses suggest a role for CreA on pacC transcriptional regulation. These data will be useful to H. grisea hydrolytic enzymes production improvement, as well as to the design of optimized promoters aiming industrial heterologous proteins production.


Assuntos
Ascomicetos/enzimologia , Celulase/metabolismo , Celulose/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Saccharum/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Biotecnologia/métodos , Carbono/metabolismo , Celulase/genética , Meios de Cultura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Concentração de Íons de Hidrogênio , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Appl Biochem Biotechnol ; 160(7): 2036-44, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19669941

RESUMO

A beta-glucosidase gene (bgl4) from Humicola grisea var thermoidea was successfully expressed in Saccharomyces cerevisiae. The recombinant protein (BGL4(Sc)) was initially detected associated with yeast cells and later in the culture medium. BGL4(Sc) showed optimal pH and temperature of 6.0 and 40 degrees C, respectively, and an apparent molecular mass of 57 kDa. The enzyme showed activity against cellobiose and synthetic substrates, and was inhibited more than 80% by Fe2+, Cu2+, Zn2+, and Al3+. Using p-nitrophenyl-beta-D-glucopyranoside (pNPG) as substrate, BGL4(Sc) presented a V(max) of 6.72 micromol min(-1) mg total protein(-1) and a K (m) of 0.16 mM under optimal conditions. Most important, BGL4(Sc) is resistant to inhibition by glucose and the calculated K (i) value for this sugar is 70 mM. This feature prompts BLG4(Sc) as an ideal enzyme to be used in the saccharification process of lignocellulosic materials for ethanol production.


Assuntos
Ascomicetos/genética , Saccharomyces cerevisiae/genética , beta-Glucosidase/genética , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/genética , Temperatura , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa