Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 132(2): 335-347, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37478315

RESUMO

BACKGROUND AND AIMS: Studying trait variability and restricted gene flow between populations of species can reveal species dynamics. Peripheral populations commonly exhibit lower genetic diversity and trait variability due to isolation and ecological marginality, unlike central populations experiencing gene flow and optimal conditions. This study focused on Carex curvula, the dominant species in alpine acidic meadows of European mountain regions. The species is sparser in dry areas such as the Pyrenees and Balkans, compared to the Central-Eastern Alps and Carpathians. We hypothesized that distinct population groups could be identified based on their mean functional trait values and their correlation with the environment; we predicted that ecologically marginal populations would have stronger trait correlations, lower within-population trait variability (intraspecific trait variability, ITV) and lower genetic diversity than populations of optimal habitats. METHODS: Sampling was conducted in 34 populations that spanned the entire distribution range of C. curvula. We used hierarchical clustering to identify emergent functional groups of populations, defined by combinations of multiple traits associated with nutrient economy and drought tolerance (e.g. specific leaf area, anatomy). We contrasted the geographical distribution of these groups in relation to environment and genetic structure. We compared pairwise trait relationships, within-population trait variation (ITV) and neutral genetic diversity between groups. KEY RESULTS: Our study identified emergent functional groups of populations. Those in the southernmost ranges, specifically the Pyrenees and Balkan region, showed drought-tolerant trait syndromes and correlated with indicators of limited water availability. While we noted a decline in population genetic diversity, we did not observe any significant changes in ITV in ecologically marginal (peripheral) populations. CONCLUSIONS: Our research exemplifies the relationship between ecological marginality and geographical peripherality, which in this case study is linked to genetic depauperation but not to reduced ITV. Understanding these relationships is crucial for understanding the biogeographical factors shaping trait variation.


Assuntos
Ecossistema , Plantas , Fenótipo , Geografia
2.
Plant Cell Environ ; 45(3): 719-736, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34622470

RESUMO

Human activity and natural processes have led to the widespread dissemination of metals and metalloids, many of which are toxic and have a negative impact on plant growth and development. Roots, as the first point of contact, are essential in endowing plants with tolerance to excess metal(loid) in the soil. The most important root processes that contribute to tolerance are: adaptation of transport processes that affect uptake efflux and long-distance transport of metal(loid)s; metal(loid) detoxification within root cells via conjugation to thiol rich compounds and subsequent sequestration in the vacuole; plasticity in root architecture; the presence of bacteria and fungi in the rhizosphere that impact on metal(loid) bioavailability; the role of root exudates. In this review, we provide details on these processes and assess their relevance on the detoxification of arsenic, cadmium, mercury and zinc in crops. Furthermore, we assess which of these strategies have been tested in field conditions and whether they are effective in terms of improving crop metal(loid) tolerance.


Assuntos
Arsênio , Metaloides , Metais Pesados , Poluentes do Solo , Arsênio/toxicidade , Produtos Agrícolas , Metais , Rizosfera , Poluentes do Solo/toxicidade
3.
Curr Microbiol ; 78(4): 1227-1237, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33625570

RESUMO

Selection and dissemination of resistant bacteria and antibiotic resistance genes (ARGs) require a deeper understanding since antibiotics are permanently released to the environment. The objective of this paper was to evaluate the phenotypic resistance of 499 isolates of Pseudomonas spp. from urban water sources, and the prevalence of 20 ARGs within those isolates. Resistance to penicillins, cephalosporins, carbapenems, quinolones, macrolides, and tetracyclines was mainly observed in the hospital effluent, municipal wastewater and river water downstream the city. Resistant strains were frequently identified as P. aeruginosa and P. putida. P. aeruginosa isolates were mostly resistant to cefepime, ceftazidime, imipenem, and gentamycin, while P. putida strains were especially resistant to piperacillin-tazobactam. ARGs such as blaTEM-1, blaSHV-1, blaPER-1, blaAmpC, blaVIM-1, PstS, qnrA, qnrB, ermB, tetA, tetB and tetC have been detected. The blaAmpC gene was found in P. aeruginosa, while blaTEM-1 and blaPER-1 genes were found in P. putida. Class 1 integron integrase gene was found in 6.81% of the Pseudomonas isolates.


Assuntos
Pseudomonas , Ciclo Hidrológico , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Integrons/genética , Testes de Sensibilidade Microbiana , Pseudomonas/genética , Pseudomonas aeruginosa/genética , Águas Residuárias
4.
Physiol Mol Biol Plants ; 25(6): 1335-1347, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31736538

RESUMO

Salt tolerance mechanisms of halophyte Petrosimonia triandra, growing in its natural habitat in Cluj County, Romania, were investigated via biomass, growth parameters, water status, ion content, photosynthetic and antioxidative system efficiency, proline accumulation and lipid degradation. Two sampling sites with different soil electrical conductivities were selected: site 1: 3.14 dS m-1 and site 2: 4.45 dS m-1. Higher salinity proved to have a positive effect on growth. The relative water content did not decline severely, Na+ and K+ content of the roots, stem and leaves was more, and the functions of the photosynthetic apparatus and photosynthetic pigment contents were not altered. The efficiency of the antioxidative defence system was found to be assured by coordination of several reactive oxygen species scavengers. The presence of higher salinity led to accumulation of the osmolyte proline, while degradation of membrane lipids was reduced. As a whole, P. triandra evolved different adaptational strategies to counteract soil salinity, including morphological and physiological adaptations, preservation of photosynthetic activity, development of an efficient antioxidative system and accumulation of the osmotic compound, proline.

5.
Plant Biotechnol J ; 16(1): 63-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28436146

RESUMO

Zinc (Zn) is essential for all life forms, including humans. It is estimated that around two billion people are deficient in their Zn intake. Human dietary Zn intake relies heavily on plants, which in many developing countries consists mainly of cereals. The inner part of cereal grain, the endosperm, is the part that is eaten after milling but contains only a quarter of the total grain Zn. Here, we present results demonstrating that endosperm Zn content can be enhanced through expression of a transporter responsible for vacuolar Zn accumulation in cereals. The barley (Hordeum vulgare) vacuolar Zn transporter HvMTP1 was expressed under the control of the endosperm-specific D-hordein promoter. Transformed plants exhibited no significant change in growth but had higher total grain Zn concentration, as measured by ICP-OES, compared to parental controls. Compared with Zn, transformants had smaller increases in concentrations of Cu and Mn but not Fe. Staining grain cross sections with the Zn-specific stain DTZ revealed a significant enhancement of Zn accumulation in the endosperm of two of three transformed lines, a result confirmed by ICP-OES in the endosperm of dissected grain. Synchrotron X-ray fluorescence analysis of longitudinal grain sections demonstrated a redistribution of grain Zn from aleurone to endosperm. We argue that this proof-of-principle study provides the basis of a strategy for biofortification of cereal endosperm with Zn.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Zinco/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Endosperma/genética , Endosperma/metabolismo , Hordeum/genética , Hordeum/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética
6.
J Environ Manage ; 223: 286-296, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29933144

RESUMO

Current physical or chemical methods used for remediation of soils contaminated with hexachlocyclohexane (HCH), leave behind significant levels of pollutants. Given the compound's volatility and persistence in the environment, sites contaminated with HCH remain a concern for the population living in nearby areas. By making use of both the recovery capacity and the pollutant uptake ability of spontaneously growing vegetation, our study aimed to identify native plant species able to cover and moreover take up the HCH left at a former lindane production unit in Turda, Romania. The results showed that dominant species across the study site like Lotus tenuis, Artemisia vulgaris or Tanacetum vulgare, were capable of taking up HCH in their tissues, according to different patterns that combined at the scale of the plant community. Regardless of the proximity of the HCH contamination hotspots, the development of the plant cover was characteristic for vegetation succession on disturbed soils of the Central European region. Finally, we conclude that plant species which grow spontaneously at the HCH contaminated site in Turda and are capable of taking up the pollutant, represent a self-sustainable and low maintenance phytomanagement approach that would allow for the reintegration of the site in the urban or industrial circuit and nevertheless would reduce the toxicity risk to the neighboring human inhabitants.


Assuntos
Biodegradação Ambiental , Plantas , Poluentes do Solo , Hexaclorocicloexano , Romênia , Solo
7.
J Environ Manage ; 210: 210-225, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29348058

RESUMO

Elemental concentrations in vegetation are of critical importance, whether establishing plant essential element concentrations (toxicity vs. deficiency) or investigating deleterious elements (e.g., heavy metals) differentially extracted from the soil by plants. Traditionally, elemental analysis of vegetation has been facilitated by acid digestion followed by quantification via inductively coupled plasma (ICP) or atomic absorption (AA) spectroscopy. Previous studies have utilized portable X-ray fluorescence (PXRF) spectroscopy to quantify elements in soils, but few have evaluated the vegetation. In this study, a PXRF spectrometer was employed to scan 228 organic material samples (thatch, deciduous leaves, grasses, tree bark, and herbaceous plants) from smelter-impacted areas of Romania, as well as National Institute of Standards and Technology (NIST) certified reference materials, to demonstrate the application of PXRF for elemental determination in vegetation. Samples were scanned in three conditions: as received from the field (moist), oven dry (70 °C), and dried and powdered to pass a 2 mm sieve. Performance metrics of PXRF models relative to ICP atomic emission spectroscopy were developed to asses optimal scanning conditions. Thatch and bark samples showed the highest mean PXRF and ICP concentrations (e.g., Zn, Pb, Cd, Fe), with the exceptions of K and Cl. Validation statistics indicate that the stable validation predictive capacity of PXRF increased in the following order: oven dry intact < field moist < oven dried and powdered. Even under field moist conditions, PXRF could reasonably be used for the determination of Zn (coefficient of determination, R2val 0.86; residual prediction deviation, RPD 2.72) and Cu (R2val 0.77; RPD 2.12), while dried and powdered samples allowed for stable validation prediction of Pb (R2val 0.90; RPD 3.29), Fe (R2val 0.80; RPD 2.29), Cd (R2val 0.75; RPD 2.07) and Cu (R2val 0.98; RPD of 8.53). Summarily, PXRF was shown to be a useful approach for quickly assessing the elemental concentration in vegetation. Future PXRF/vegetation research should explore additional elements and investigate its usefulness in evaluating phytoremediation effectiveness.


Assuntos
Monitoramento Ambiental , Poluentes do Solo , Romênia , Espectrometria por Raios X , Raios X
9.
J Biol Chem ; 287(5): 3185-96, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22139846

RESUMO

Metal tolerance proteins (MTPs) are plant members of the cation diffusion facilitator (CDF) transporter family involved in cellular metal homeostasis. Members of the CDF family are ubiquitously found in all living entities and show principal selectivity for Zn(2+), Mn(2+), and Fe(2+). Little is known regarding metal selectivity determinants of CDFs. We identified a novel cereal member of CDFs in barley, termed HvMTP1, that localizes to the vacuolar membrane. Unlike its close relative AtMTP1, which is highly selective for Zn(2+), HvMTP1 exhibits selectivity for both Zn(2+) and Co(2+) as assessed by its ability to suppress yeast mutant phenotypes for both metals. Expression of HvMTP1/AtMTP1 chimeras in yeast revealed a five-residue sequence within the AtMTP1 N-segment of the His-rich intracytoplasmic loop that confines specificity to Zn(2+). Furthermore, mutants of AtMTP1 generated through random mutagenesis revealed residues embedded within transmembrane domain 3 that additionally specify the high degree of Zn(2+) selectivity. We propose that the His-rich loop, which might play a role as a zinc chaperone, determines the identity of the metal ions that are transported. The residues within transmembrane domain 3 can also influence metal selectivity, possibly through conformational changes induced at the cation transport site located within the membrane or at the cytoplasmic C-terminal domain.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Hordeum/metabolismo , Metais/metabolismo , Vacúolos/patologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Hordeum/genética , Transporte de Íons/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacúolos/genética
10.
Metabolites ; 13(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132853

RESUMO

While heavy metals (HM) have been considered in recent decades to be the most common and problematic pollutants, the expansion of the list of pollutants due to the active use of carbon nanotubes (CNT) raises new questions about the benefit and harm of HM released to nature individually or fixed on CNT walls. A pot experiment was conducted to compare the effect of two classes of potential pollutants-metal salts of Pb, Mn, Cu, Zn, Cd, and Ni; and functionalized CNTs with COOH, MnO2, Fe3O4, and MnO2-Fe3O4-applied in soil, on the elemental transfer, the bioactive compounds accumulation, and the antioxidant activity in lettuce. While CNTs mainly increased the elemental transfer from soil to leaves, HM salts strongly obstructed it. In the presence of CNTs, the antioxidant activity in lettuce leaves correlated with the transfer of elements from soil to root and from root to leaves. The excess of HMs in soil induced a greater variation of the polyphenols quantity and antioxidant activity than the excess of CNTs. It might be assumed that lettuce perceived HMs as a more aggressive stressor than CNTs and more strongly activated the defense mechanism, showing the reduction of the element transfer and enhancing of total polyphenol production and antioxidant activity.

11.
Plants (Basel) ; 12(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37653877

RESUMO

The aim of this work was to evaluate the effect of six nanomaterials, namely CNT-COOH, CNT-MnO2, CNT-Fe3O4, CNT-MnO2-Fe3O4, MnO2, and Fe3O4 on lettuceTo determine the impact of nanomaterials on lettuce, the results obtained were compared with those for the control plant, grown in the same conditions of light, temperature, and humidity but without the addition of nanomaterial. The study found that the content of bioactive compounds and the antioxidant capacity varied in the treated plants compared to the control ones, depending on the nanomaterial. The use of CNTs functionalized with metal oxides increases the elemental concentration of lettuce leaves for the majority of the elements. On the contrary, metal oxide nanoparticles and CNT functionalized with carboxyl groups induce a decrease in the concentration of many elements. Soil amending with MnO2 affects the content of more than ten elements in leaves. Simultaneous application of CNT and MnO2 stimulates the elemental translocation of all elements from roots to leaves, but the simultaneous use of CNT and Fe3O4 leads to the most intense translocation compared to the control other than Mo.

12.
Mol Plant ; 15(1): 65-85, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34952215

RESUMO

Zinc plays many essential roles in life. As a strong Lewis acid that lacks redox activity under environmental and cellular conditions, the Zn2+ cation is central in determining protein structure and catalytic function of nearly 10% of most eukaryotic proteomes. While specific functions of zinc have been elucidated at a molecular level in a number of plant proteins, wider issues abound with respect to the acquisition and distribution of zinc by plants. An important challenge is to understand how plants balance between Zn supply in soil and their own nutritional requirement for zinc, particularly where edaphic factors lead to a lack of bioavailable zinc or, conversely, an excess of zinc that bears a major risk of phytotoxicity. Plants are the ultimate source of zinc in the human diet, and human Zn deficiency accounts for over 400 000 deaths annually. Here, we review the current understanding of zinc homeostasis in plants from the molecular and physiological perspectives. We provide an overview of approaches pursued so far in Zn biofortification of crops. Finally, we outline a "push-pull" model of zinc nutrition in plants as a simplifying concept. In summary, this review discusses avenues that can potentially deliver wider benefits for both plant and human Zn nutrition.


Assuntos
Biofortificação , Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Homeostase/fisiologia , Triticum/química , Triticum/metabolismo , Zinco/análise , Zinco/metabolismo
13.
J Fungi (Basel) ; 8(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35736072

RESUMO

Research into the biodeteriorative potential of fungi can serve as an indicator of the condition of heritage items. Biodeterioration of canvas paintings as a result of fungal metabolic activity is understudied with respect to both the species diversity and mechanisms involved. This study brings new evidence for the physiology of fungi biodeteriorative capacity of canvas paintings. Twenty-one fungal isolates were recovered from four oil paintings (The Art Museum, Cluj-Napoca) and one gouache painting (private collection), dating from the 18th to 20th centuries. The species, identified based on the molecular markers Internal Transcribed Spacer (ITS), beta-tubulin (tub2), or translation elongation factor 1 (TEF-1), are common colonisers of canvas paintings or indoor environments (e.g., Penicillium spp., Aspergillus spp., Alternaria spp.). Fungi enzymatic profiles were investigated by means of hydrolysable substrates, included in culture media or in test strips, containing components commonly used in canvas paintings. The pigment solubilisation capacity was assessed in culture media for the primary pigments and studied in relation to the organic acid secretion. Caseinases, amylases, gelatinases, acid phosphatase, N-acetyl-ß-glucosaminidase, naphthol-AS-BI-phosphohydrolase, and ß-glucosidase were found to be the enzymes most likely involved in the processes of substrate colonisation and breakdown of its components. Aureobasidium genus was found to hold the strongest biodeteriorative potential, followed by Cladosporium, Penicillium, Trichoderma, and Aspergillus. Blue pigment solubilisation was detected, occurring as a result of organic acids secretion. Distinct clusters were delineated considering the metabolic activities detected, indicating that fungi specialise in utilisation of certain types of substrates. It was found that both aged and modern artworks are at risk of fungal biodeterioration, due to the enzymatic activities' diversity and intensity, pigment solubilisation capacity or pigment secretion.

14.
iScience ; 25(4): 104029, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313690

RESUMO

Nutrients are scarce and valuable resources, so plants developed sophisticated mechanisms to optimize nutrient use efficiency. A crucial part of this is monitoring external and internal nutrient levels to adjust processes such as uptake, redistribution, and cellular compartmentation. Measurement of nutrient levels is carried out by primary sensors that typically involve either transceptors or transcription factors. Primary sensors are only now starting to be identified in plants for some nutrients. In particular, for nitrate, there is detailed insight concerning how the external nitrate status is sensed by members of the nitrate transporter 1 (NRT1) family. Potential sensors for other macronutrients such as potassium and sodium have also been identified recently, whereas for micronutrients such as zinc and iron, transcription factor type sensors have been reported. This review provides an overview that interprets and evaluates our current understanding of how plants sense macro and micronutrients in the rhizosphere and root symplast.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33801363

RESUMO

Mercury (Hg) pollution is a global threat to human and environmental health because of its toxicity, mobility and long-term persistence. Although costly engineering-based technologies can be used to treat heavily Hg-contaminated areas, they are not suitable for decontaminating agricultural or extensively-polluted soils. Emerging phyto- and bioremediation strategies for decontaminating Hg-polluted soils generally involve low investment, simple operation, and in situ application, and they are less destructive for the ecosystem. Current understanding of the uptake, translocation and sequestration of Hg in plants is reviewed to highlight new avenues for exploration in phytoremediation research, and different phytoremediation strategies (phytostabilization, phytoextraction and phytovolatilization) are discussed. Research aimed at identifying suitable plant species and associated-microorganisms for use in phytoremediation of Hg-contaminated soils is also surveyed. Investigation into the potential use of transgenic plants in Hg-phytoremediation is described. Recent research on exploiting the beneficial interactions between plants and microorganisms (bacteria and fungi) that are Hg-resistant and secrete plant growth promoting compounds is reviewed. We highlight areas where more research is required into the effective use of phytoremediation on Hg-contaminated sites, and conclude that the approaches it offers provide considerable potential for the future.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Humanos , Solo , Poluentes do Solo/análise
16.
Plants (Basel) ; 10(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805226

RESUMO

Morphological and anatomical traits of the Vinca leaf were examined using microscopy techniques. Outdoor Vinca minor and V. herbacea plants and greenhouse cultivated V. major and V. major var. variegata plants had interspecific variations. All Vinca species leaves are hypostomatic. However, except for V. minor leaf, few stomata were also present on the upper epidermis. V. minor leaf had the highest stomatal index and V. major had the lowest, while the distribution of trichomes on the upper epidermis was species-specific. Differentiated palisade and spongy parenchyma tissues were present in all Vinca species' leaves. However, V. minor and V. herbacea leaves had a more organized anatomical aspect, compared to V. major and V. major var. variegata leaves. Additionally, as a novelty, the cellular to intercellular space ratio of the Vinca leaf's mesophyll was revealed herein with the help of computational analysis. Lipid droplets of different sizes and aspects were localized in the spongy parenchyma cells. Ultrastructural characteristics of the cuticle and its epicuticular waxes were described for the first time. Moreover, thick layers of cutin seemed to be characteristic of the outdoor plants only. This could be an adaptation to the unpredictable environmental conditions, but nevertheless, it might influence the chemical composition of plants.

17.
J Fungi (Basel) ; 7(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069296

RESUMO

Filamentous fungi native to heavy metals (HMs) contaminated sites have great potential for bioremediation, yet are still often underexploited. This research aimed to assess the HMs resistance and Hg remediation capacity of fungi isolated from the rhizosphere of plants resident on highly Hg-contaminated substrate. Analysis of Hg, Pb, Cu, Zn, and Cd concentrations by X-ray spectrometry generated the ecological risk of the rhizosphere soil. A total of 32 HM-resistant fungal isolates were molecularly identified. Their resistance spectrum for the investigated elements was characterized by tolerance indices (TIs) and minimum inhibitory concentrations (MICs). Clustering analysis of TIs was coupled with isolates' phylogeny to evaluate HMs resistance patterns. The bioremediation potential of five isolates' live biomasses, in 100 mg/L Hg2+ aqueous solution over 48 h at 120 r/min, was quantified by atomic absorption spectrometry. New species or genera that were previously unrelated to Hg-contaminated substrates were identified. Ascomycota representatives were common, diverse, and exhibited varied HMs resistance spectra, especially towards the elements with ecological risk, in contrast to Mucoromycota-recovered isolates. HMs resistance patterns were similar within phylogenetically related clades, although isolate specific resistance occurred. Cladosporium sp., Didymella glomerata, Fusarium oxysporum, Phoma costaricensis, and Sarocladium kiliense isolates displayed very high MIC (mg/L) for Hg (140-200), in addition to Pb (1568), Cu (381), Zn (2092-2353), or Cd (337). The Hg biosorption capacity of these highly Hg-resistant species ranged from 33.8 to 54.9 mg/g dry weight, with a removal capacity from 47% to 97%. Thus, the fungi identified herein showed great potential as bioremediators for highly Hg-contaminated aqueous substrates.

18.
Sci Total Environ ; 767: 144653, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550064

RESUMO

The toxicity, volatility and persistence of the obsolete organochlorine pesticide hexachlorocyclohexane (HCH), makes reclamation of contaminated areas a priority for the health and welfare of neighboring human communities. Microbial diversity and functions and their relation to spontaneous vegetation in post-excavation situations, are essential indicators to consider in bioaugmentation or microbe-assisted phytoremediation strategies at field scale. Our study aimed to evaluate the effects of long-term HCH contamination on soil and plant-associated microbial communities, and whether contaminated soil has the potential to act as a bacterial inoculum in post-excavation bioremediation strategies. To scrutinize the role of vegetation, the potential nitrogen fixation of free-living and symbiotic diazotrophs of the legume Lotus tenuis was assessed as a measure of nutrient cycling functions in soil under HCH contamination. Potential nitrogen fixation was generally not affected by HCH, with the exception of lower nifH gene counts in excavated contaminated rhizospheres, most probably a short-term HCH effect on early bacterial succession in this compartment. HCH shaped microbial communities in long-term contaminated bulk soil, where we identified possible HCH tolerants such as Sphingomonas and Altererythrobacter. In L. tenuis rhizosphere, microbial community composition was additionally influenced by plant growth stage. Sphingobium and Massilia were the bacterial genera characteristic for HCH contaminated rhizospheres. Long-term HCH contamination negatively affected L. tenuis growth and development. However, root-associated bacterial community composition was driven solely by plant age, with negligible HCH effect. Results showed that L. tenuis acquired possible HCH tolerant bacteria such as the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade, Sphingomonas, Massilia or Pantoea which could simultaneously offer plant growth promoting (PGP) benefits for the host. Finally, we identified an inoculum with possibly HCH tolerant, PGP bacteria transferred from the contaminated bulk soil to L. tenuis roots through the rhizosphere compartment, consisting of Mesorhizobium loti, Neorhizobium galegae, Novosphingobium lindaniclasticum, Pantoea agglomerans and Lysobacter bugurensis.


Assuntos
Hexaclorocicloexano , Poluentes do Solo , Biodegradação Ambiental , Hexaclorocicloexano/análise , Hexaclorocicloexano/toxicidade , Humanos , Lysobacter , Mesorhizobium , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Sphingomonadaceae
19.
Sci Rep ; 8(1): 13714, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209406

RESUMO

Despite a recent increase in interest towards phytoglobins and their importance in plants, much is still unknown regarding their biochemical/biophysical properties and physiological roles. The present study presents data on three recombinant Arabidopsis phytoglobins in terms of their UV-vis and Raman spectroscopic characteristics, redox state control, redox potentials and autoxidation rates. The latter are strongly influenced by pH for all three hemoglobins - (with a fundamental involvement of the distal histidine), as well as by added anion concentrations - suggesting either a process dominated by nucleophilic displacement of superoxide for AtHb2 or an inhibitory effect for AtHb1 and AtHb3. Reducing agents, such as ascorbate and glutathione, are found to either enhance- (presumably via direct electron transfer or via allosteric regulation) or prevent autoxidation. HbFe3+ reduction was possible in the presence of high (presumably not physiologically relevant) concentrations of NADH, glutathione and ascorbate, with differing behaviors for the three globins. The iron coordination sphere is found to affect the autoxidation, redox state interconversion and redox potentials in these three phytoglobins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Hemoglobinas/metabolismo , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Concentração de Íons de Hidrogênio , NAD/metabolismo , Oxirredução , Superóxidos/metabolismo
20.
Sci Total Environ ; 347(1-3): 53-63, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16084967

RESUMO

An eight-fold underestimate of the potential Cd exposure to humans via ingestion of lettuce grown in moderately alkaline soil has been measured experimentally. Current models of Cd uptake by leafy vegetables, which are used in risk assessment (e.g. CLEA in UK) predict higher concentration factors in acid than in alkaline soils. Experimental evidence shows that Cd uptake, although it decreases with increasing pH from acid to neutral soils, increases again in alkaline soils, confirming recent finding from other workers. The concentration of Zn in the soil also significantly affects the uptake of Cd, although this is not included in the current prediction models either. The effect of Zn on the uptake of Cd by plants is greater in slightly alkaline soils (pH 7.7) than in slightly acidic or neutral soils. High concentrations of Zn in soil (1000 mg/kg), which are often associated with elevated Cd levels, further increase the Cd concentration factor to values 12 times higher than that predicted by the CLEA model. This is due in part to the effect of the high soil Zn on reducing the above-ground biomass of the plants.


Assuntos
Cádmio/metabolismo , Concentração de Íons de Hidrogênio , Lactuca/metabolismo , Medição de Risco , Zinco/análise , Cádmio/análise , Contaminação de Alimentos , Humanos , Lactuca/química , Modelos Teóricos , Folhas de Planta/química , Folhas de Planta/metabolismo , Reprodutibilidade dos Testes , Poluentes do Solo/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa