Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Anal Bioanal Chem ; 413(22): 5669-5678, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34244834

RESUMO

Plant viruses are major contributors to crop losses and induce high economic costs worldwide. For reliable, on-site and early detection of plant viral diseases, portable biosensors are of great interest. In this study, a field-effect SiO2-gate electrolyte-insulator-semiconductor (EIS) sensor was utilized for the label-free electrostatic detection of tobacco mosaic virus (TMV) particles as a model plant pathogen. The capacitive EIS sensor has been characterized regarding its TMV sensitivity by means of constant-capacitance method. The EIS sensor was able to detect biotinylated TMV particles from a solution with a TMV concentration as low as 0.025 nM. A good correlation between the registered EIS sensor signal and the density of adsorbed TMV particles assessed from scanning electron microscopy images of the SiO2-gate chip surface was observed. Additionally, the isoelectric point of the biotinylated TMV particles was determined via zeta potential measurements and the influence of ionic strength of the measurement solution on the TMV-modified EIS sensor signal has been studied.


Assuntos
Vírus do Mosaico do Tabaco/isolamento & purificação , Vírion/isolamento & purificação , Produtos Agrícolas/virologia , Espectroscopia Dielétrica , Microscopia Eletrônica de Varredura , Concentração Osmolar , Eletricidade Estática
2.
Sensors (Basel) ; 21(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577368

RESUMO

The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed.


Assuntos
Eletrólitos , Semicondutores , Capacitância Elétrica
3.
Sensors (Basel) ; 20(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023133

RESUMO

Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure-the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed.


Assuntos
Técnicas Biossensoriais , Eletrólitos , Semicondutores , Polieletrólitos
4.
Anal Chem ; 90(12): 7747-7753, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29770694

RESUMO

Field-effect-based electrolyte-insulator-semiconductor (EIS) sensors were modified with a bilayer of positively charged weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) and probe single-stranded DNA (ssDNA) and are used for the detection of complementary single-stranded target DNA (cDNA) in different test solutions. The sensing mechanism is based on the detection of the intrinsic molecular charge of target cDNA molecules after the hybridization event between cDNA and immobilized probe ssDNA. The test solutions contain synthetic cDNA oligonucleotides (with a sequence of tuberculosis mycobacteria genome) or PCR-amplified DNA (which origins from a template DNA strand that has been extracted from Mycobacterium avium paratuberculosis-spiked human sputum samples), respectively. Sensor responses up to 41 mV have been measured for the test solutions with DNA, while only small signals of ∼5 mV were detected for solutions without DNA. The lower detection limit of the EIS sensors was ∼0.3 nM, and the sensitivity was ∼7.2 mV/decade. Fluorescence experiments using SybrGreen I fluorescence dye support the electrochemical results.


Assuntos
Técnicas Biossensoriais/métodos , DNA Bacteriano/genética , Técnicas Eletroquímicas , Mycobacterium tuberculosis/genética , Polieletrólitos/química , Reação em Cadeia da Polimerase , Semicondutores , Benzotiazóis , DNA Bacteriano/análise , Diaminas , Técnicas Eletroquímicas/instrumentação , Corantes Fluorescentes/química , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Compostos Orgânicos/química , Quinolinas
5.
Chemphyschem ; 18(12): 1541-1551, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28301717

RESUMO

We study the mechanisms involved in the release, triggered by the application of glucose, of insulin entrapped in Fe3+ -cross-linked alginate hydrogel particles further stabilized with a polyelectrolyte. Platelet-shaped alginate particles are synthesized containing enzyme glucose oxidase conjugated with silica nanoparticles, which are also entrapped in the hydrogel. Glucose diffuses in from solution, and production of hydrogen peroxide is catalyzed by the enzyme within the hydrogel. We argue that, specifically for the Fe3+ -cross-linked systems, the produced hydrogen peroxide is further converted to free radicals via a Fenton-type reaction catalyzed by the iron cations. The activity of free radicals, as well as the reduction of Fe3+ by the enzyme, and other mechanisms contribute to the decrease in density of the hydrogel. As a result, while the particles remain intact, void sizes increase and release of insulin ensues and is followed experimentally. A theoretical description of the involved processes is proposed and utilized to fit the data. It is then used to study the long-time properties of the release process that offers a model for designing new drug-release systems.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Compostos Férricos/metabolismo , Glucose Oxidase/metabolismo , Glucose/metabolismo , Hidrogéis/metabolismo , Insulina/metabolismo , Reagentes de Ligações Cruzadas/química , Compostos Férricos/química , Glucose/química , Glucose Oxidase/química , Hidrogéis/química , Insulina/química , Modelos Moleculares , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula , Dióxido de Silício/química , Dióxido de Silício/metabolismo
6.
Anal Bioanal Chem ; 409(1): 81-94, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27900435

RESUMO

The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion. Graphical Abstract Various applications and signal-transduction methods are reviewed for enzyme-based logic systems.


Assuntos
Técnicas Biossensoriais/instrumentação , Computadores Moleculares , Animais , Biocatálise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Humanos , Modelos Moleculares , Semicondutores , Transdutores
7.
Anal Chem ; 87(13): 6607-13, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26016927

RESUMO

Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(D,L-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers.


Assuntos
Materiais Biocompatíveis , Técnicas Biossensoriais , Polímeros/química , Biocatálise , Microscopia de Força Atômica
8.
Analyst ; 139(8): 1839-42, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24603754

RESUMO

An enzyme system organized in a flow device was used to mimic a reversible Controlled NOT (CNOT) gate with two input and two output signals. Reversible conversion of NAD(+) and NADH cofactors was used to perform a XOR logic operation, while biocatalytic hydrolysis of p-nitrophenyl phosphate resulted in an Identity operation working in parallel. The first biomolecular realization of a CNOT gate is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.


Assuntos
Enzimas/metabolismo , NAD/metabolismo , Biocatálise , Hidrólise , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo
9.
Analyst ; 138(21): 6251-7, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24003440

RESUMO

A new biocatalytic assay analyzing the simultaneous presence of creatine kinase (CK) and lactate dehydrogenase (LDH) was developed aiming at the recognition of biofluids of different ethnic origins for forensic applications. Knowing the difference in the concentrations of CK and LDH in the blood of healthy adults of two ethnical groups, Caucasian (CA) and African American (AA), and taking into account the distribution pattern, we mimicked the samples of different ethnic origins with various CK-LDH concentrations. The analysis was performed using a multi-enzyme/multi-step biocatalytic cascade where the differences in both included enzymes resulted in an amplified difference in the final analytical response. The statistically established analytical results confirmed excellent probability to distinguish samples of different ethnic origins (CA vs. AA). The standard enzymatic assay routinely used in hospitals for the analysis of CK, performed for comparison, was not able to distinguish the difference in samples mimicking blood of different ethnic origins. The robustness of the proposed assay was successfully tested on dried/aged serum samples (up to 24 h) - in order to mimic real forensic situations. The results obtained on the model solutions were confirmed by the analysis of real serum samples collected from human subjects of different ethnic origins.


Assuntos
Negro ou Afro-Americano/etnologia , Creatina Quinase/sangue , Ciências Forenses/métodos , L-Lactato Desidrogenase/sangue , População Branca/etnologia , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Enzimas , Humanos
10.
Bioelectrochemistry ; 151: 108397, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906982

RESUMO

This work presents a new approach for the development of field-effect biosensors based on an electrolyte-insulator-semiconductor capacitor (EISCAP) modified with a stacked bilayer of weak polyelectrolyte and tobacco mosaic virus (TMV) particles as enzyme nanocarriers. With the aim to increase the surface density of virus particles and thus, to achieve a dense immobilization of enzymes, the negatively charged TMV particles were loaded onto the EISCAP surface modified with a positively charged poly(allylamine hydrochloride) (PAH) layer. The PAH/TMV bilayer was prepared on the Ta2O5-gate surface by means of layer-by-layer technique. The bare and differently modified EISCAP surfaces were physically characterized by fluorescence microscopy, zeta-potential measurements, atomic force microscopy and scanning electron microscopy. Transmission electron microscopy was used to scrutinize the PAH effect on TMV adsorption in a second system. Finally, a highly sensitive TMV-assisted EISCAP antibiotics biosensor was realized by immobilizing the enzyme penicillinase onto the TMV surface. This PAH/TMV bilayer-modified EISCAP biosensor was electrochemically characterized in solutions with different penicillin concentrations via capacitance-voltage and constant-capacitance methods. The biosensor possessed a mean penicillin sensitivity of 113 mV/dec in a concentration range from 0.1 mM to 5 mM.


Assuntos
Técnicas Biossensoriais , Vírus do Mosaico do Tabaco , Polieletrólitos , Penicilinas , Antibacterianos , Vírus do Mosaico do Tabaco/química , Eletrólitos , Técnicas Biossensoriais/métodos
11.
Viruses ; 15(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37766357

RESUMO

Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.


Assuntos
Corantes Fluorescentes , Polietilenoglicóis , Polieletrólitos , Imunoglobulina G
12.
Biosensors (Basel) ; 12(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35624635

RESUMO

Nanoparticles are recognized as highly attractive tunable materials for designing field-effect biosensors with enhanced performance. In this work, we present a theoretical model for electrolyte-insulator-semiconductor capacitors (EISCAP) decorated with ligand-stabilized charged gold nanoparticles. The charged AuNPs are taken into account as additional, nanometer-sized local gates. The capacitance-voltage (C-V) curves and constant-capacitance (ConCap) signals of the AuNP-decorated EISCAPs have been simulated. The impact of the AuNP coverage on the shift of the C-V curves and the ConCap signals was also studied experimentally on Al-p-Si-SiO2 EISCAPs decorated with positively charged aminooctanethiol-capped AuNPs. In addition, the surface of the EISCAPs, modified with AuNPs, was characterized by scanning electron microscopy for different immobilization times of the nanoparticles.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Ligantes , Dióxido de Silício
13.
Biosensors (Basel) ; 12(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35049671

RESUMO

Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO2-Ta2O5 layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1-3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta2O5-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.


Assuntos
Vírus do Mosaico do Tabaco , Eletrólitos , Penicilinase/análise , Penicilinase/química , Penicilinas/análise , Penicilinas/química , Dióxido de Silício/química , Ureia/química , Urease/química
14.
Micromachines (Basel) ; 12(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418949

RESUMO

Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta2O5-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta2O5-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles.

15.
Anal Chem ; 82(1): 61-5, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20041720

RESUMO

The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.


Assuntos
Técnicas Biossensoriais/instrumentação , Potenciometria/instrumentação , Potenciometria/métodos , Glucose/química , Luz , Nanotubos de Carbono , Penicilina G/química , Sensibilidade e Especificidade
16.
Front Plant Sci ; 11: 598103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329662

RESUMO

Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases.

17.
Biosens Bioelectron ; 140: 111272, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170654

RESUMO

Monitoring of food quality, in particular, milk quality, is critical in order to maintain food safety and human health. To guarantee quality and safety of milk products and at the same time deliver those as soon as possible, rapid analysis methods as well as sensitive, reliable, cost-effective, easy-to-use devices and systems for process control and milk spoilage detection are needed. In this paper, we review different rapid methods, sensors and commercial systems for milk spoilage and microorganism detection. The main focus lies on chemical sensors and biosensors for detection/monitoring of the well-known indicators associated with bacterial growth and milk spoilage such as changes in pH value, conductivity/impedance, adenosine triphosphate level, concentration of dissolved oxygen and produced CO2. These sensors offer several advantages, like high sensitivity, fast response time, minimal sample preparation, miniaturization and ability for real-time monitoring of milk spoilage. In addition, electronic-nose- and electronic-tongue systems for the detection of characteristic volatile and non-volatile compounds related to microbial growth and milk spoilage are described. Finally, wireless sensors and color indicators for intelligent packaging are discussed.


Assuntos
Técnicas Biossensoriais/instrumentação , Análise de Alimentos/instrumentação , Leite/química , Animais , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/métodos , Nariz Eletrônico/economia , Análise de Alimentos/economia , Análise de Alimentos/métodos , Qualidade dos Alimentos , Inocuidade dos Alimentos , Humanos , Leite/microbiologia , Fatores de Tempo , Tecnologia sem Fio/economia , Tecnologia sem Fio/instrumentação
18.
Biosens Bioelectron ; 126: 510-517, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476882

RESUMO

The reusability of capacitive field-effect electrolyte-insulator-semiconductor (EIS) sensors modified with a cationic weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) for the label-free electrical detection of single-stranded DNA (ssDNA), in-solution- and on-chip-hybridized double-stranded DNA (dsDNA) has been studied. It has been demonstrated that via simply regeneration of the gate surface of the EIS sensor by means of an electrostatic adsorption of a new PAH layer, the same biosensor can be reused for at least five DNA-detection measurements. Because of the reversal of the charge sign of the outermost layer after each surface modification with the cationic PAH or negatively charged DNA molecules, the EIS-biosensor signal exhibits a zigzag-like behavior. The amplitude of the signal changes has a tendency to decrease with increasing number of macromolecular layers. The direction of the EIS-signal shifts can serve as an indicator for a successful DNA-immobilization or -hybridization process. In addition, we observed that the EIS-signal changes induced by each surface-modification step (PAH adsorption, immobilization of ssDNA or dsDNA molecules and on-chip hybridization of complementary target cDNA) is decreased with increasing the ionic strength of the measurement solution, due to the more efficient macromolecular charge-screening by counter ions. The results of field-effect experiments were supported by fluorescence-intensity measurements of the PAH- or DNA-modified EIS surface using various fluorescence dyes.


Assuntos
Técnicas Biossensoriais , DNA de Cadeia Simples/isolamento & purificação , Ácidos Nucleicos Imobilizados/química , DNA/química , DNA Complementar/química , DNA de Cadeia Simples/química , Hibridização de Ácido Nucleico , Poliaminas , Polieletrólitos/química , Semicondutores
19.
Nanotheranostics ; 2(2): 184-196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29577021

RESUMO

The presentation of enzymes on viral scaffolds has beneficial effects such as an increased enzyme loading and a prolonged reusability in comparison to conventional immobilization platforms. Here, we used modified tobacco mosaic virus (TMV) nanorods as enzyme carriers in penicillin G detection for the first time. Penicillinase enzymes were conjugated with streptavidin and coupled to TMV rods by use of a bifunctional biotin-linker. Penicillinase-decorated TMV particles were characterized extensively in halochromic dye-based biosensing. Acidometric analyte detection was performed with bromcresol purple as pH indicator and spectrophotometry. The TMV-assisted sensors exhibited increased enzyme loading and strongly improved reusability, and higher analysis rates compared to layouts without viral adapters. They extended the half-life of the sensors from 4 - 6 days to 5 weeks and thus allowed an at least 8-fold longer use of the sensors. Using a commercial budget-priced penicillinase preparation, a detection limit of 100 µM penicillin was obtained. Initial experiments also indicate that the system may be transferred to label-free detection layouts.

20.
Methods Mol Biol ; 1776: 553-568, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869265

RESUMO

Nanotubular tobacco mosaic virus (TMV) particles and RNA-free lower-order coat protein (CP) aggregates have been employed as enzyme carriers in different diagnostic layouts and compared for their influence on biosensor performance. In the following, we describe a label-free electrochemical biosensor for improved glucose detection by use of TMV adapters and the enzyme glucose oxidase (GOD). A specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CP aggregates was achieved via bioaffinity binding. Glucose sensors with adsorptively immobilized [SA]-GOD, and with [SA]-GOD cross-linked with glutardialdehyde, respectively, were tested in parallel on the same sensor chip. Comparison of these sensors revealed that TMV adapters enhanced the amperometric glucose detection remarkably, conveying highest sensitivity, an extended linear detection range and fastest response times. These results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for applications in biosensorics and biochips. Here, we describe the fabrication and use of amperometric sensor chips combining an array of circular Pt electrodes, their loading with GOD-modified TMV nanotubes (and other GOD immobilization methods), and the subsequent investigations of the sensor performance.


Assuntos
Técnicas Biossensoriais/métodos , Glucose Oxidase/química , Glucose/isolamento & purificação , Vírus do Mosaico do Tabaco/química , Enzimas Imobilizadas/química , Glucose/química , Ouro/química , Humanos , Nanotubos/química , Platina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa