Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 56(36): 4840-4849, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28841311

RESUMO

The peptide sequence KLVFF resembles the hydrophobic core of the Aß peptide known to form amyloid plaques in Alzheimer's disease. Starting from its retro-inverso peptide, we have synthesized three generations of peptidomimetics. Step by step natural amino acids have been replaced by aromatic building blocks accessible from the Pd-catalyzed Catellani reaction. The final compound 18 is stable against proteolytic decay and largely prevents the aggregation of Aß1-42 over extended periods of time. The activity of the new inhibitors was tested first by fluorescence correlation spectroscopy. For closer examination of compound 18, additional techniques were also applied: laser-induced liquid bead ion desorption mass spectrometry, confocal laser scanning microscopy, thioflavin T fluorescence, and gel electrophoresis. Compound 18 not only retards the aggregation of chemically synthesized Aß but also can partially dissolve the oligomeric structures. Thioflavin binding mature fibrils, however, seem to resist the inhibitor.


Assuntos
Peptídeos beta-Amiloides , Fragmentos de Peptídeos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lactato Desidrogenases/genética , Lactato Desidrogenases/metabolismo , Estrutura Molecular , Fragmentos de Peptídeos/química , Ligação Proteica
2.
Neurochem Res ; 41(1-2): 231-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26721513

RESUMO

Developing new therapeutic strategies for Alzheimer's disease (AD) is a current challenge. Approved drugs merely act symptomatically and delay the progression of the disease for a relatively short period of time. Here, we investigated the effectiveness of MH84 in a cellular HEK293APPwt model of AD, characterized by elevated beta amyloid protein levels (Aß1-42) and mitochondrial dysfunction. MH84 is a derivate of pirinixic acid belonging to a novel class of γ-secretase modulators, which combines γ-secretase modulation with activation of peroxisome proliferator-activator receptor gamma (PPARγ). The mitochondria modifying Dimebon, the γ-secretase blocker DAPT, and the PPARγ agonist pioglitazone were used as controls. MH84 protects against nitrosative stress, increased mitochondrial respiration, citrate synthase (CS) activity and protein levels of PGC1α indicating enhanced mitochondrial content at nano-molar concentrations. Concurrently, MH84 decreased protein levels of APP, Aß1-42, and C-terminal fragments at micro-molar concentrations. Both Dimebon and DAPT reduced cellular Aß1-42 levels. Dimebon improved mitochondrial functions and DAPT decreased mitochondrial membrane potential. Pioglitazone had no effects on APP processing and mitochondrial function. Our data emphasizes MH84 as possible novel therapeutic agent with mitochondria-based mode of action.


Assuntos
Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide/efeitos dos fármacos , Mitocôndrias/fisiologia , Modelos Biológicos , PPAR gama/agonistas , Pirimidinas/química , Pirimidinas/farmacologia , Células HEK293 , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/fisiologia
3.
Alzheimers Res Ther ; 10(1): 18, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29433569

RESUMO

BACKGROUND: Current approved drugs for Alzheimer's disease (AD) only attenuate symptoms, but do not cure the disease. The pirinixic acid derivate MH84 has been characterized as a dual gamma-secretase/proliferator activated receptor gamma (PPARγ) modulator in vitro. Pharmacokinetic studies in mice showed that MH84 is bioavailable after oral administration and reaches the brain. We recently demonstrated that MH84 improved mitochondrial dysfunction in a cellular model of AD. In the present study, we extended the pharmacological characterization of MH84 to 3-month-old Thy-1 AßPPSL mice (harboring the Swedish and London mutation in human amyloid precursor protein (APP)) which are characterized by enhanced AßPP processing and cerebral mitochondrial dysfunction, representing a mouse model of early AD. METHODS: Three-month-old Thy-1 AßPPSL mice received 12 mg/kg b.w. MH84 by oral gavage once a day for 21 days. Mitochondrial respiration was analyzed in isolated brain mitochondria, and mitochondrial membrane potential and ATP levels were determined in dissociated brain cells. Citrate synthase (CS) activity was determined in brain tissues and MitoTracker Green fluorescence was measured in HEK293-AßPPwt and HEK293-AßPPsw cells. Soluble Aß1-40 and Aß1-42 levels were determined using ELISA. Western blot analysis and qRT-PCR were used to measure protein and mRNA levels, respectively. RESULTS: MH84 reduced cerebral levels of the ß-secretase-related C99 peptide and of Aß40 levels. Mitochondrial dysfunction was ameliorated by restoring complex IV (cytochrome-c oxidase) respiration, mitochondrial membrane potential, and levels of ATP. Induction of PPARγ coactivator-1α (PGC-1α) mRNA and protein expression was identified as a possible mode of action that leads to increased mitochondrial mass as indicated by enhanced CS activity, OXPHOS levels, and MitoTracker Green fluorescence. CONCLUSIONS: MH84 modulates ß-secretase processing of APP and improves mitochondrial dysfunction by a PGC-1α-dependent mechanism. Thus, MH84 seems to be a new promising therapeutic agent with approved in-vivo activity for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Caproatos/farmacologia , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Pirimidinas/farmacologia , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caproatos/uso terapêutico , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Fragmentos de Peptídeos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Pirimidinas/uso terapêutico , RNA Mensageiro/metabolismo
4.
Neuromolecular Med ; 18(3): 378-95, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27455862

RESUMO

Dementia contributes substantially to the burden of disability experienced at old age, and mitochondrial dysfunction (MD) was identified as common final pathway in brain aging and Alzheimer's disease. Due to its early appearance, MD is a promising target for nutritional prevention strategies and polyphenols as potential neurohormetic inducers may be strong neuroprotective candidates. This study aimed to investigate the effects of a polyphenol-rich grape skin extract (PGE) on age-related dysfunctions of brain mitochondria, memory, life span and potential hormetic pathways in C57BL/6J mice. PGE was administered at a dose of 200 mg/kg body weight/d in a 3-week short-term, 6-month long-term and life-long study. MD in the brains of aged mice (19-22 months old) compared to young mice (3 months old) was demonstrated by lower ATP levels and by impaired mitochondrial respiratory complex activity (except for mice treated with antioxidant-depleted food pellets). Long-term PGE feeding partly enhanced brain mitochondrial respiration with only minor beneficial effect on brain ATP levels and memory of aged mice. Life-long PGE feeding led to a transient but significant shift of survival curve toward higher survival rates but without effect on the overall survival. The moderate effects of PGE were associated with elevated SIRT1 but not SIRT3 mRNA expressions in brain and liver tissue. The beneficial effects of the grape extract may have been influenced by the profile of bioavailable polyphenols and the starting point of interventions.


Assuntos
Memória/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Vitis/química , Envelhecimento , Animais , Encéfalo/patologia , Longevidade/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa